Battery Modeling for Emulators in Vehicle Test Cell

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY
Chris Roberts, Simon Petrovich, Kambiz Ebrahimi
{"title":"Battery Modeling for Emulators in Vehicle Test Cell","authors":"Chris Roberts, Simon Petrovich, Kambiz Ebrahimi","doi":"10.3390/batteries10060199","DOIUrl":null,"url":null,"abstract":"This paper investigates modeling techniques for the mathematical representation of HV (high-voltage) Li-ion batteries to be used in conjunction with battery emulators for the test cell environment. To enable the impact of the battery response to be assessed in conjunction with other electrified systems, battery emulators are used with advanced mathematical models describing the expected voltage output with respect to current load. This paper conducted research into different modeling types: electrochemical, thermal, and electronic equivalent circuit models (EECMs). EECMs were identified as the most suitable to be used in conjunction with emulation techniques. A foundation EECM was created in conjunction with a thermal part to simulate thermal dependency. Hybrid Pulse Power Characterization (HPPC) tests were conducted on an NMC Li-ion cell across a range of temperatures from −20 °C to 25 °C. Using parameter optimization techniques, the HPPC test data were used to identify the resistance, capacitance, and the open-circuit voltage of the cell across a range of state of charge bounds and across a temperature range of 0 °C to 25 °C. The foundation model was assessed using identified parameters on two current profiles derived from drive cycles across a temperature range of 0 °C to 10 °C. The FMU (Functional Mockup Unit) model format was determined as the required interface for an AVL battery emulator.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10060199","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates modeling techniques for the mathematical representation of HV (high-voltage) Li-ion batteries to be used in conjunction with battery emulators for the test cell environment. To enable the impact of the battery response to be assessed in conjunction with other electrified systems, battery emulators are used with advanced mathematical models describing the expected voltage output with respect to current load. This paper conducted research into different modeling types: electrochemical, thermal, and electronic equivalent circuit models (EECMs). EECMs were identified as the most suitable to be used in conjunction with emulation techniques. A foundation EECM was created in conjunction with a thermal part to simulate thermal dependency. Hybrid Pulse Power Characterization (HPPC) tests were conducted on an NMC Li-ion cell across a range of temperatures from −20 °C to 25 °C. Using parameter optimization techniques, the HPPC test data were used to identify the resistance, capacitance, and the open-circuit voltage of the cell across a range of state of charge bounds and across a temperature range of 0 °C to 25 °C. The foundation model was assessed using identified parameters on two current profiles derived from drive cycles across a temperature range of 0 °C to 10 °C. The FMU (Functional Mockup Unit) model format was determined as the required interface for an AVL battery emulator.
车辆测试单元中模拟器的电池建模
本文研究了 HV(高压)锂离子电池的数学表示建模技术,该技术将与电池仿真器一起用于测试电池环境。为了能够结合其他电气化系统评估电池响应的影响,电池仿真器采用了先进的数学模型,描述了与电流负载相关的预期电压输出。本文对不同的建模类型进行了研究:电化学模型、热模型和电子等效电路模型(EECM)。EECM 被认为是最适合与仿真技术结合使用的模型。我们创建了一个基础等效电路模型,并结合一个热部件来模拟热依赖性。在 NMC 锂离子电池上进行了混合脉冲功率特性(HPPC)测试,温度范围从 -20 °C 到 25 °C。利用参数优化技术,HPPC 测试数据被用来确定电池在一系列充电状态界限和 0 °C 至 25 °C 温度范围内的电阻、电容和开路电压。在 0 °C 至 10 °C 的温度范围内,使用从驱动循环中获得的两个电流曲线上的已识别参数对基础模型进行了评估。FMU (功能模拟单元)模型格式被确定为 AVL 电池模拟器所需的接口。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信