Label-free surface-enhanced Raman scattering (SERS) and machine learning for biological analysis

Der Vang, Jonathan Pahren, Tom Cambron, Pietro Strobbia
{"title":"Label-free surface-enhanced Raman scattering (SERS) and machine learning for biological analysis","authors":"Der Vang, Jonathan Pahren, Tom Cambron, Pietro Strobbia","doi":"10.1117/12.3013981","DOIUrl":null,"url":null,"abstract":"Understanding biological samples is an important part of disease treatment and prevention. Current methods of biological analysis can be time-consuming and costly. Label-free Surface-Enhanced Raman Scattering (SERS) is a useful vibrational technique that incorporates plasmonic metal nanomaterial to amplify Raman signals. This technique requires little sample preparation and provides high informational chemical insights on the target. Herein, we use SERS to test and analyze biological samples of exosomes and bacteria. Each biological sample has similar biomolecular components that are difficult to differentiate or show small differences after interacting with other chemicals. Thus, herein, we show the incorporation of principal component analysis to understand differences and trends in the spectra. These studies highlight the powerful combination of SERS and machine learning for biological analysis.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"20 3","pages":"130590C - 130590C-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding biological samples is an important part of disease treatment and prevention. Current methods of biological analysis can be time-consuming and costly. Label-free Surface-Enhanced Raman Scattering (SERS) is a useful vibrational technique that incorporates plasmonic metal nanomaterial to amplify Raman signals. This technique requires little sample preparation and provides high informational chemical insights on the target. Herein, we use SERS to test and analyze biological samples of exosomes and bacteria. Each biological sample has similar biomolecular components that are difficult to differentiate or show small differences after interacting with other chemicals. Thus, herein, we show the incorporation of principal component analysis to understand differences and trends in the spectra. These studies highlight the powerful combination of SERS and machine learning for biological analysis.
用于生物分析的无标签表面增强拉曼散射(SERS)和机器学习
了解生物样本是疾病治疗和预防的重要组成部分。目前的生物分析方法既耗时又昂贵。无标记表面增强拉曼散射(SERS)是一种有用的振动技术,它结合了等离子体金属纳米材料来放大拉曼信号。这种技术只需很少的样品制备,就能提供关于目标物的高信息化学洞察力。在这里,我们使用 SERS 测试和分析外泌体和细菌的生物样本。每种生物样本都有类似的生物分子成分,与其他化学物质相互作用后难以区分或显示微小差异。因此,我们在本文中展示了主成分分析法,以了解光谱中的差异和趋势。这些研究凸显了 SERS 与机器学习在生物分析中的强大结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信