{"title":"A Dynamical Analysis and New Traveling Wave Solution of the Fractional Coupled Konopelchenko–Dubrovsky Model","authors":"Jin Wang, Zhao Li","doi":"10.3390/fractalfract8060341","DOIUrl":null,"url":null,"abstract":"The main object of this paper is to study the traveling wave solutions of the fractional coupled Konopelchenko–Dubrovsky model by using the complete discriminant system method of polynomials. Firstly, the fractional coupled Konopelchenko–Dubrovsky model is simplified into nonlinear ordinary differential equations by using the traveling wave transformation. Secondly, the trigonometric function solutions, rational function solutions, solitary wave solutions and the elliptic function solutions of the fractional coupled Konopelchenko–Dubrovsky model are derived by means of the polynomial complete discriminant system method. Moreover, a two-dimensional phase portrait is drawn. Finally, a 3D-diagram and a 2D-diagram of the fractional coupled Konopelchenko–Dubrovsky model are plotted in Maple 2022 software.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8060341","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The main object of this paper is to study the traveling wave solutions of the fractional coupled Konopelchenko–Dubrovsky model by using the complete discriminant system method of polynomials. Firstly, the fractional coupled Konopelchenko–Dubrovsky model is simplified into nonlinear ordinary differential equations by using the traveling wave transformation. Secondly, the trigonometric function solutions, rational function solutions, solitary wave solutions and the elliptic function solutions of the fractional coupled Konopelchenko–Dubrovsky model are derived by means of the polynomial complete discriminant system method. Moreover, a two-dimensional phase portrait is drawn. Finally, a 3D-diagram and a 2D-diagram of the fractional coupled Konopelchenko–Dubrovsky model are plotted in Maple 2022 software.
期刊介绍:
Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.