Quantization to accelerate inference in multimodal 3D object detection

Billy E. Geerhart, Venkateswara Dasari, Brian Rapp, Peng Wang, Ju Wang, Christopher X. Payne
{"title":"Quantization to accelerate inference in multimodal 3D object detection","authors":"Billy E. Geerhart, Venkateswara Dasari, Brian Rapp, Peng Wang, Ju Wang, Christopher X. Payne","doi":"10.1117/12.3013702","DOIUrl":null,"url":null,"abstract":"The Label-Diffusion-LIDAR-Segmentation (LDLS) algorithm uses multi-modal data for enhanced inference of environmental categories. The algorithm segments the Red-Green-Blue (RGB) channels and maps the results to the LIDAR point cloud using matrix calculations to reduce noise. Recent research has developed custom optimization techniques using quantization to accelerate the 3D object detection using LDLS in robotic systems. These optimizations achieve a 3x speedup over the original algorithm, making it possible to deploy the algorithm in real-world applications. The optimizations include quantization for the segmentation inference as well as matrix optimizations for the label diffusion. We will present our results, compare them with the baseline, and discuss their significance in achieving real-time object detection in resource-constrained environments.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"25 32","pages":"1305807 - 1305807-10"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Label-Diffusion-LIDAR-Segmentation (LDLS) algorithm uses multi-modal data for enhanced inference of environmental categories. The algorithm segments the Red-Green-Blue (RGB) channels and maps the results to the LIDAR point cloud using matrix calculations to reduce noise. Recent research has developed custom optimization techniques using quantization to accelerate the 3D object detection using LDLS in robotic systems. These optimizations achieve a 3x speedup over the original algorithm, making it possible to deploy the algorithm in real-world applications. The optimizations include quantization for the segmentation inference as well as matrix optimizations for the label diffusion. We will present our results, compare them with the baseline, and discuss their significance in achieving real-time object detection in resource-constrained environments.
量化加速多模态三维物体检测推理
标签扩散-激光雷达分割(LDLS)算法利用多模态数据加强对环境类别的推断。该算法对红绿蓝(RGB)通道进行分割,并利用矩阵计算将结果映射到激光雷达点云,以减少噪声。最近的研究开发了使用量化的定制优化技术,以加速机器人系统中使用 LDLS 的 3D 物体检测。这些优化技术将原始算法的速度提高了 3 倍,使该算法在实际应用中的部署成为可能。优化包括分割推理的量化以及标签扩散的矩阵优化。我们将介绍我们的成果,将其与基线进行比较,并讨论它们在资源受限环境中实现实时物体检测的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信