Praveen Kumar, Priyanka Priyanka, K. V. Uday, Varun Dutt
{"title":"Addressing class imbalance in soil movement predictions","authors":"Praveen Kumar, Priyanka Priyanka, K. V. Uday, Varun Dutt","doi":"10.5194/nhess-24-1913-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Landslides threaten human life and infrastructure, resulting in fatalities and economic losses. Monitoring stations provide valuable data for predicting soil movement, which is crucial in mitigating this threat. Accurately predicting soil movement from monitoring data is challenging due to its complexity and inherent class imbalance. This study proposes developing machine learning (ML) models with oversampling techniques to address the class imbalance issue and develop a robust soil movement prediction system. The dataset, comprising 2 years (2019–2021) of monitoring data from a landslide in Uttarakhand, has a 70:30 ratio of training and testing data. To tackle the class imbalance problem, various oversampling techniques, including the synthetic minority oversampling technique (SMOTE), K-means SMOTE, borderline-SMOTE, and adaptive SMOTE (ADASYN), were applied to the training dataset. Several ML models, namely random forest (RF), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), adaptive boosting (AdaBoost), category boosting (CatBoost), long short-term memory (LSTM), multilayer perceptron (MLP), and a dynamic ensemble, were trained and compared for soil movement prediction. A 5-fold cross-validation method was applied to optimize the ML models on the training data, and the models were tested on the testing set. Among these ML models, the dynamic ensemble model with K-means SMOTE performed the best in testing, with an accuracy, precision, and recall rate of 0.995, 0.995, and 0.995, respectively, and an F1 score of 0.995. Additionally, models without oversampling exhibited poor performance in training and testing, highlighting the importance of incorporating oversampling techniques to enhance predictive capabilities.\n","PeriodicalId":508073,"journal":{"name":"Natural Hazards and Earth System Sciences","volume":"87 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Hazards and Earth System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/nhess-24-1913-2024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. Landslides threaten human life and infrastructure, resulting in fatalities and economic losses. Monitoring stations provide valuable data for predicting soil movement, which is crucial in mitigating this threat. Accurately predicting soil movement from monitoring data is challenging due to its complexity and inherent class imbalance. This study proposes developing machine learning (ML) models with oversampling techniques to address the class imbalance issue and develop a robust soil movement prediction system. The dataset, comprising 2 years (2019–2021) of monitoring data from a landslide in Uttarakhand, has a 70:30 ratio of training and testing data. To tackle the class imbalance problem, various oversampling techniques, including the synthetic minority oversampling technique (SMOTE), K-means SMOTE, borderline-SMOTE, and adaptive SMOTE (ADASYN), were applied to the training dataset. Several ML models, namely random forest (RF), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), adaptive boosting (AdaBoost), category boosting (CatBoost), long short-term memory (LSTM), multilayer perceptron (MLP), and a dynamic ensemble, were trained and compared for soil movement prediction. A 5-fold cross-validation method was applied to optimize the ML models on the training data, and the models were tested on the testing set. Among these ML models, the dynamic ensemble model with K-means SMOTE performed the best in testing, with an accuracy, precision, and recall rate of 0.995, 0.995, and 0.995, respectively, and an F1 score of 0.995. Additionally, models without oversampling exhibited poor performance in training and testing, highlighting the importance of incorporating oversampling techniques to enhance predictive capabilities.