Synergetic effect of block and catalysis on polysulfides by functionalized bilayer modification on the separator for lithium-sulfur batteries

Yitian Ma, Linqing Chang, Dawei Yi, Meng Liu, Peichun Wang, Shuliang Luo, Zhiyun Zhang, Yan Yuan, Hai Lu
{"title":"Synergetic effect of block and catalysis on polysulfides by functionalized bilayer modification on the separator for lithium-sulfur batteries","authors":"Yitian Ma, Linqing Chang, Dawei Yi, Meng Liu, Peichun Wang, Shuliang Luo, Zhiyun Zhang, Yan Yuan, Hai Lu","doi":"10.20517/energymater.2023.109","DOIUrl":null,"url":null,"abstract":"One crucial problem hindering the commercial application of lithium-sulfur batteries with high theoretical specific energy is the ceaseless shuttle of soluble lithium polysulfides (LiPSs) between cathodes and anodes, which usually leads to rapid capacity fade and serious self-discharge issues. Herein, a unique bilayer coating strategy designed to modify the polypropylene separator was developed in this study, which consisted of a bottom zeolite (SSZ-13) layer serving as a LiPS movement barrier and a top ZnS layer used for accelerating redox processes of LiPSs. Benefiting from the synergetic effect, the bilayer-modified separator offers absolute block capability to LiPS diffusion, moreover, significant catalysis effect on sulfur species conversion, as well as outstanding lithium-ion (Li+) conductivity, excellent electrolyte wettability, and desirable mechanical properties. Consequently, the assembled lithium-sulfur cell with the SSZ-13/ZnS@polypropylene separator demonstrates excellent cycle stability and rate capability, showcasing a capacity decay rate of only 0.052% per cycle at 1 C over 500 cycles.","PeriodicalId":516209,"journal":{"name":"Energy Materials","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One crucial problem hindering the commercial application of lithium-sulfur batteries with high theoretical specific energy is the ceaseless shuttle of soluble lithium polysulfides (LiPSs) between cathodes and anodes, which usually leads to rapid capacity fade and serious self-discharge issues. Herein, a unique bilayer coating strategy designed to modify the polypropylene separator was developed in this study, which consisted of a bottom zeolite (SSZ-13) layer serving as a LiPS movement barrier and a top ZnS layer used for accelerating redox processes of LiPSs. Benefiting from the synergetic effect, the bilayer-modified separator offers absolute block capability to LiPS diffusion, moreover, significant catalysis effect on sulfur species conversion, as well as outstanding lithium-ion (Li+) conductivity, excellent electrolyte wettability, and desirable mechanical properties. Consequently, the assembled lithium-sulfur cell with the SSZ-13/ZnS@polypropylene separator demonstrates excellent cycle stability and rate capability, showcasing a capacity decay rate of only 0.052% per cycle at 1 C over 500 cycles.
通过对锂硫电池隔膜进行功能化双层改性,实现多硫化物的嵌段和催化协同效应
阻碍理论比能量高的锂硫电池商业化应用的一个关键问题是可溶性多硫化锂(LiPS)在正负极之间的无休止穿梭,这通常会导致容量快速衰减和严重的自放电问题。为此,本研究开发了一种独特的双层涂层策略,用于改性聚丙烯隔膜,其中包括作为锂多硫化物移动屏障的底部沸石(SSZ-13)层和用于加速锂多硫化物氧化还原过程的顶部 ZnS 层。得益于协同效应,双层改性隔膜对锂离子扩散具有绝对的阻挡能力,而且对硫物种转化具有显著的催化作用,同时还具有出色的锂离子(Li+)导电性、优异的电解质润湿性和理想的机械性能。因此,使用 SSZ-13/ZnS@ 聚丙烯隔膜组装的锂硫电池具有出色的循环稳定性和速率能力,在 1 C 条件下循环 500 次,每次容量衰减率仅为 0.052%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信