The Pollution Characteristics and Fate of Microplastics in Typical Wastewater Treatment Systems in Northern China

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL
Yi Ma, Zhenkang Bao, Shangying Cai, Qiong Wang, Beibei Dou, Xiangyu Niu, Qingzhen Meng, Penghao Li, Xiaoying Guo
{"title":"The Pollution Characteristics and Fate of Microplastics in Typical Wastewater Treatment Systems in Northern China","authors":"Yi Ma, Zhenkang Bao, Shangying Cai, Qiong Wang, Beibei Dou, Xiangyu Niu, Qingzhen Meng, Penghao Li, Xiaoying Guo","doi":"10.3390/separations11060177","DOIUrl":null,"url":null,"abstract":"This study focuses on the occurrence status and removal efficiency of microplastics in wastewater treatment plant processes. Analysis of effluent and sludge samples from the Wulongkou and Shuangqiao wastewater treatment plants in Zhengzhou revealed an overall microplastic removal efficiency of 95.64% and 92.53%, respectively, indicating the effectiveness of wastewater treatment plants in reducing microplastic emissions. Microplastics primarily exist in forms such as fiber, fragment, floc, film, and grain. Fibers are predominant in the effluent of the Wulongkou plant, while fibers and films predominate in the effluent of the Shuangqiao plant. Moreover, microplastics are predominantly sized below 500 μm, with larger microplastics (2–5 mm) exhibiting higher removal efficiencies after secondary treatment. Analysis of microplastic types revealed that PE is the most common type in the effluent of the Wulongkou plant, while the Shuangqiao plant predominantly contains PE and PA66. The abundance of microplastics in sludge samples was found to be 6.4 ± 0.8 items/g and 11.3 ± 2.3 items/g, highlighting sludge as an important sink for microplastics. Surface analysis of microplastics revealed characteristics such as wrinkles and cracks, with energy-dispersive spectroscopy indicating significant adsorption of heavy metal elements such as Zn, Hg, and Pb onto microplastic surfaces in sludge. These findings underscore the importance of microplastic removal in wastewater treatment processes and provide scientific evidence for the control and management of microplastic pollution in the future.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11060177","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study focuses on the occurrence status and removal efficiency of microplastics in wastewater treatment plant processes. Analysis of effluent and sludge samples from the Wulongkou and Shuangqiao wastewater treatment plants in Zhengzhou revealed an overall microplastic removal efficiency of 95.64% and 92.53%, respectively, indicating the effectiveness of wastewater treatment plants in reducing microplastic emissions. Microplastics primarily exist in forms such as fiber, fragment, floc, film, and grain. Fibers are predominant in the effluent of the Wulongkou plant, while fibers and films predominate in the effluent of the Shuangqiao plant. Moreover, microplastics are predominantly sized below 500 μm, with larger microplastics (2–5 mm) exhibiting higher removal efficiencies after secondary treatment. Analysis of microplastic types revealed that PE is the most common type in the effluent of the Wulongkou plant, while the Shuangqiao plant predominantly contains PE and PA66. The abundance of microplastics in sludge samples was found to be 6.4 ± 0.8 items/g and 11.3 ± 2.3 items/g, highlighting sludge as an important sink for microplastics. Surface analysis of microplastics revealed characteristics such as wrinkles and cracks, with energy-dispersive spectroscopy indicating significant adsorption of heavy metal elements such as Zn, Hg, and Pb onto microplastic surfaces in sludge. These findings underscore the importance of microplastic removal in wastewater treatment processes and provide scientific evidence for the control and management of microplastic pollution in the future.
中国北方典型污水处理系统中微塑料的污染特征与归宿
本研究的重点是污水处理厂工艺中微塑料的出现状况和去除效率。通过对郑州市五龙口污水处理厂和双桥污水处理厂的出水和污泥样品进行分析,发现其对微塑料的总体去除率分别为 95.64% 和 92.53%,这表明污水处理厂在减少微塑料排放方面的效果显著。微塑料主要以纤维、碎片、絮状物、薄膜和颗粒等形式存在。乌龙口污水处理厂的出水以纤维为主,双桥污水处理厂的出水以纤维和薄膜为主。此外,微塑料的尺寸主要在 500 微米以下,较大的微塑料(2-5 毫米)在二级处理后的去除率更高。对微塑料类型的分析表明,五龙口工厂的污水中最常见的类型是 PE,而双桥工厂的污水中主要含有 PE 和 PA66。污泥样本中的微塑料含量分别为 6.4 ± 0.8 微克/克和 11.3 ± 2.3 微克/克,这表明污泥是微塑料的一个重要汇。微塑料的表面分析显示出褶皱和裂纹等特征,能量色散光谱显示污泥中的微塑料表面吸附了大量重金属元素,如锌、汞和铅。这些发现强调了在污水处理过程中去除微塑料的重要性,并为今后控制和管理微塑料污染提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信