Predictors for the Differentiation between Glioblastoma, Primary Central Nervous System Lymphoma, and Metastasis in Patients with a Solitary Enhancing Intracranial Mass

Pornthida Chuthip, B. Sitthinamsuwan, Theerapol Witthiwej, Chottiwat Tansirisithikul, Inthira Khumpalikit, S. Nunta-aree
{"title":"Predictors for the Differentiation between Glioblastoma, Primary Central Nervous System Lymphoma, and Metastasis in Patients with a Solitary Enhancing Intracranial Mass","authors":"Pornthida Chuthip, B. Sitthinamsuwan, Theerapol Witthiwej, Chottiwat Tansirisithikul, Inthira Khumpalikit, S. Nunta-aree","doi":"10.1055/s-0044-1787051","DOIUrl":null,"url":null,"abstract":"Abstract Introduction  Differentiation between glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastasis is important in decision-making before surgery. However, these malignant brain tumors have overlapping features. This study aimed to identify predictors differentiating between GBM, PCNSL, and metastasis. Materials and Methods  Patients with a solitary intracranial enhancing tumor and a histopathological diagnosis of GBM, PCNSL, or metastasis were investigated. All patients with intracranial lymphoma had PCNSL without extracranial involvement. Demographic, clinical, and radiographic data were analyzed to determine their associations with the tumor types. Results  The predictors associated with GBM were functional impairment ( p  = 0.001), large tumor size ( p  < 0.001), irregular tumor margin ( p  < 0.001), heterogeneous contrast enhancement ( p  < 0.001), central necrosis ( p  < 0.001), intratumoral hemorrhage ( p  = 0.018), abnormal flow void ( p  < 0.001), and hypodensity component on noncontrast cranial computed tomography (CT) scan ( p  < 0.001). The predictors associated with PCNSL comprised functional impairment ( p  = 0.005), deep-seated tumor location ( p  = 0.006), homogeneous contrast enhancement ( p  < 0.001), absence of cystic appearance ( p  = 0.008), presence of hypointensity component on precontrast cranial T1-weighted magnetic resonance imaging (MRI; p  = 0.027), and presence of isodensity component on noncontrast cranial CT ( p  < 0.008). Finally, the predictors for metastasis were an infratentorial ( p  < 0.001) or extra-axial tumor location ( p  = 0.035), smooth tumor margin ( p  < 0.001), and presence of isointensity component on cranial fluid-attenuated inversion recovery MRI ( p  = 0.047). Conclusion  These predictors may be used to differentiate between GBM, PCNSL, and metastasis, and they are useful in clinical management.","PeriodicalId":8521,"journal":{"name":"Asian Journal of Neurosurgery","volume":"24 S52","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Neurosurgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1055/s-0044-1787051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Introduction  Differentiation between glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and metastasis is important in decision-making before surgery. However, these malignant brain tumors have overlapping features. This study aimed to identify predictors differentiating between GBM, PCNSL, and metastasis. Materials and Methods  Patients with a solitary intracranial enhancing tumor and a histopathological diagnosis of GBM, PCNSL, or metastasis were investigated. All patients with intracranial lymphoma had PCNSL without extracranial involvement. Demographic, clinical, and radiographic data were analyzed to determine their associations with the tumor types. Results  The predictors associated with GBM were functional impairment ( p  = 0.001), large tumor size ( p  < 0.001), irregular tumor margin ( p  < 0.001), heterogeneous contrast enhancement ( p  < 0.001), central necrosis ( p  < 0.001), intratumoral hemorrhage ( p  = 0.018), abnormal flow void ( p  < 0.001), and hypodensity component on noncontrast cranial computed tomography (CT) scan ( p  < 0.001). The predictors associated with PCNSL comprised functional impairment ( p  = 0.005), deep-seated tumor location ( p  = 0.006), homogeneous contrast enhancement ( p  < 0.001), absence of cystic appearance ( p  = 0.008), presence of hypointensity component on precontrast cranial T1-weighted magnetic resonance imaging (MRI; p  = 0.027), and presence of isodensity component on noncontrast cranial CT ( p  < 0.008). Finally, the predictors for metastasis were an infratentorial ( p  < 0.001) or extra-axial tumor location ( p  = 0.035), smooth tumor margin ( p  < 0.001), and presence of isointensity component on cranial fluid-attenuated inversion recovery MRI ( p  = 0.047). Conclusion  These predictors may be used to differentiate between GBM, PCNSL, and metastasis, and they are useful in clinical management.
颅内单发增大肿块患者区分胶质母细胞瘤、原发性中枢神经系统淋巴瘤和转移瘤的预测因素
摘要 引言 区分胶质母细胞瘤(GBM)、原发性中枢神经系统淋巴瘤(PCNSL)和转移瘤对于手术前的决策非常重要。然而,这些恶性脑肿瘤具有重叠的特征。本研究旨在找出区分 GBM、PCNSL 和转移瘤的预测因子。材料和方法 研究对象为颅内单发增强肿瘤且组织病理学诊断为 GBM、PCNSL 或转移瘤的患者。所有颅内淋巴瘤患者均患有 PCNSL,且未累及颅外。对人口统计学、临床和放射学数据进行了分析,以确定它们与肿瘤类型的关联。结果 与 GBM 相关的预测因素有功能障碍(P = 0.001)、肿瘤体积大(P < 0.001)、肿瘤边缘不规则(P < 0.001)、异质对比增强(P < 0.001)、中心坏死(p < 0.001)、瘤内出血(p = 0.018)、异常血流空洞(p < 0.001)和非对比颅脑计算机断层扫描(CT)低密度成分(p < 0.001)。与 PCNSL 相关的预测因素包括功能障碍(p = 0.005)、深部肿瘤位置(p = 0.006)、均匀对比增强(p < 0.001)、无囊性外观(p = 0.008)、对比前头颅 T1 加权磁共振成像(MRI;p = 0.027)中存在低密度成分以及非对比头颅 CT 中存在等密度成分(p < 0.008)。最后,预测肿瘤转移的因素包括:肿瘤位于幕下(p < 0.001)或轴外(p = 0.035)、肿瘤边缘光滑(p < 0.001)以及头颅液相减影反转恢复磁共振成像出现等密度成分(p = 0.047)。结论 这些预测指标可用于区分 GBM、PCNSL 和转移瘤,并有助于临床治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信