Selection of the Value of the Power Distance Exponent for Mapping with the Inverse Distance Weighting Method—Application in Subsurface Porosity Mapping, Northern Croatia Neogene

Uroš Barudžija, Josip Ivšinović, T. Malvić
{"title":"Selection of the Value of the Power Distance Exponent for Mapping with the Inverse Distance Weighting Method—Application in Subsurface Porosity Mapping, Northern Croatia Neogene","authors":"Uroš Barudžija, Josip Ivšinović, T. Malvić","doi":"10.3390/geosciences14060155","DOIUrl":null,"url":null,"abstract":"The correct selection of the value of p is a complex and iterative procedure that requires experience in the interpretation of the obtained interpolated maps. Inverse Distance Weighting is a method applied to the porosities of the K and L hydrocarbon reservoirs discovered in the Neogene (Lower Pontian) subsurface sandstones in northern Croatia (Pannonian Basin System). They represent small and large data samples. Also, a standard statistical analysis of the data was made, followed by a qualitative–quantitative analysis of the maps, based on the selection of different values for the power distance exponent (p-value) for the K and L reservoir maps. According to the qualitative analysis, for a small data set, the p-value could be set at 1 or 2, giving the optimal result, while for a large data set, a p value of 3 or 4 could be applied. For quantitative analysis, in the case of a small data set, p = 2 is recommended, resulting in a root mean square error value of 0.03458, a mean absolute error of 0.02013 and a median absolute deviation of 0.00546. In contrast, a p-value of 3 or 4 is selected as appropriate for a large data set, with root mean square errors of 0.02435 and 0.02437, mean square errors of 0.01582 and 0.01509 and median absolute deviations 0.00896 and 0.00444. Eventually for a small data set, it is recommended to use a p-value of 2, and for a large data set, a p-value of 3 or 4.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":"110 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geosciences14060155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The correct selection of the value of p is a complex and iterative procedure that requires experience in the interpretation of the obtained interpolated maps. Inverse Distance Weighting is a method applied to the porosities of the K and L hydrocarbon reservoirs discovered in the Neogene (Lower Pontian) subsurface sandstones in northern Croatia (Pannonian Basin System). They represent small and large data samples. Also, a standard statistical analysis of the data was made, followed by a qualitative–quantitative analysis of the maps, based on the selection of different values for the power distance exponent (p-value) for the K and L reservoir maps. According to the qualitative analysis, for a small data set, the p-value could be set at 1 or 2, giving the optimal result, while for a large data set, a p value of 3 or 4 could be applied. For quantitative analysis, in the case of a small data set, p = 2 is recommended, resulting in a root mean square error value of 0.03458, a mean absolute error of 0.02013 and a median absolute deviation of 0.00546. In contrast, a p-value of 3 or 4 is selected as appropriate for a large data set, with root mean square errors of 0.02435 and 0.02437, mean square errors of 0.01582 and 0.01509 and median absolute deviations 0.00896 and 0.00444. Eventually for a small data set, it is recommended to use a p-value of 2, and for a large data set, a p-value of 3 or 4.
使用反距离加权法测绘时功率距离指数值的选择--在克罗地亚北部新近纪地下孔隙度测绘中的应用
正确选择 p 值是一个复杂的迭代过程,需要对所获得的插值图进行解释的经验。反距离加权法适用于在克罗地亚北部(潘诺尼亚盆地系统)新近纪(下庞提安)地下砂岩中发现的 K 和 L 油气藏的孔隙度。它们代表了小型和大型数据样本。此外,还对数据进行了标准统计分析,然后根据 K 和 L 储层图选择不同的幂距指数值(p 值),对储层图进行了定性-定量分析。根据定性分析,对于小数据集,可将 p 值设为 1 或 2,以获得最佳结果,而对于大数据集,可将 p 值设为 3 或 4。在定量分析中,如果数据集较小,建议 p = 2,得出的均方根误差值为 0.03458,平均绝对误差为 0.02013,中位绝对偏差为 0.00546。相反,对于大数据集,p 值为 3 或 4 比较合适,均方根误差分别为 0.02435 和 0.02437,均方误差分别为 0.01582 和 0.01509,绝对偏差中值分别为 0.00896 和 0.00444。最终,对于小数据集,建议使用 2 的 p 值,对于大数据集,建议使用 3 或 4 的 p 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信