Comment on ‘Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley–Lieb algebras’

Yi Yang, Shuigeng Zhou
{"title":"Comment on ‘Critical points of Potts and O(N) models from eigenvalue identities in periodic Temperley–Lieb algebras’","authors":"Yi Yang, Shuigeng Zhou","doi":"10.1088/1751-8121/ad4d2c","DOIUrl":null,"url":null,"abstract":"We present an algorithm to compute the exact critical probability h(n) for an n×∞ helical square lattice with random and independent site occupancy. The algorithm has time complexity O(n2cn) and space complexity O(cn) with c = 2.7459... and allows us to compute h(n) up to n = 24. Since the extrapolation result of h(n) is inconsistent with the current best estimation of pc , we also compute and extend the exact critical probability pc(n) for an n×∞ cylindrical square lattice to n = 24. Our calculation shows that the current best result of pc=0.59274605079210(2) by Jacobsen (2015 J. Phys. A: Math. Theor. 48 454003) is incorrect and the corrected value should be 0.5927460507896(1) .","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"26 2‐3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad4d2c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an algorithm to compute the exact critical probability h(n) for an n×∞ helical square lattice with random and independent site occupancy. The algorithm has time complexity O(n2cn) and space complexity O(cn) with c = 2.7459... and allows us to compute h(n) up to n = 24. Since the extrapolation result of h(n) is inconsistent with the current best estimation of pc , we also compute and extend the exact critical probability pc(n) for an n×∞ cylindrical square lattice to n = 24. Our calculation shows that the current best result of pc=0.59274605079210(2) by Jacobsen (2015 J. Phys. A: Math. Theor. 48 454003) is incorrect and the corrected value should be 0.5927460507896(1) .
关于 "从周期性 Temperley-Lieb 对象中的特征值特性看 Potts 和 O(N) 模型的临界点 "的评论
我们提出了一种算法,用于计算 n×∞ 螺旋方阵的精确临界概率 h(n),该方阵具有随机且独立的位点占位。该算法的时间复杂度为 O(n2cn),空间复杂度为 O(cn)(c = 2.7459......),可计算 h(n) 至 n = 24。由于 h(n) 的外推结果与当前 pc 的最佳估计值不一致,我们还计算并扩展了 n×∞ 圆柱方阵的精确临界概率 pc(n) 到 n = 24。我们的计算表明,雅各布森(2015 J. Phys. A: Math. Theor. 48 454003)的当前最佳结果 pc=0.59274605079210(2)是不正确的,修正值应该是 0.5927460507896(1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信