Adaptive object detection algorithms for resource constrained autonomous robotic systems

Joe Pappas, Venkateswara Dasari, Billy E. Geerhart, David M. Alexander, Peng Wang, S. Chaterji
{"title":"Adaptive object detection algorithms for resource constrained autonomous robotic systems","authors":"Joe Pappas, Venkateswara Dasari, Billy E. Geerhart, David M. Alexander, Peng Wang, S. Chaterji","doi":"10.1117/12.3013781","DOIUrl":null,"url":null,"abstract":"We optimized and deployed the adaptive framework Virtuoso that can maintain real-time object detection even when experiencing high contention scenarios. The original Virtuoso framework uses an adaptive algorithm for the detection frame followed by a low-cost algorithm for the tracker frame which uses down-sampled images to reduce computation. One of our optimizations include detaching the single synchronous thread for detection and tracking into two parallel threads. This multi-threaded implementation allows for computationally high-cost detection algorithms to be used while still maintaining real-time output from the tracker thread. Another optimization we developed uses multiple down-sampled images to initialize each tracker based on the size of the input box; the multiple down-sampled images allow each tracker to choose the optimal image size for the box that it is tracking rather than a single down-sampled image being used for all trackers.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"194 1","pages":"130580C - 130580C-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We optimized and deployed the adaptive framework Virtuoso that can maintain real-time object detection even when experiencing high contention scenarios. The original Virtuoso framework uses an adaptive algorithm for the detection frame followed by a low-cost algorithm for the tracker frame which uses down-sampled images to reduce computation. One of our optimizations include detaching the single synchronous thread for detection and tracking into two parallel threads. This multi-threaded implementation allows for computationally high-cost detection algorithms to be used while still maintaining real-time output from the tracker thread. Another optimization we developed uses multiple down-sampled images to initialize each tracker based on the size of the input box; the multiple down-sampled images allow each tracker to choose the optimal image size for the box that it is tracking rather than a single down-sampled image being used for all trackers.
资源有限的自主机器人系统的自适应物体检测算法
我们优化并部署了自适应框架 Virtuoso,即使在高争用场景下也能保持实时目标检测。最初的 Virtuoso 框架在检测帧使用自适应算法,在跟踪帧使用低成本算法,该算法使用向下采样图像来减少计算量。我们的优化措施之一是将用于检测和跟踪的单个同步线程分离成两个并行线程。这种多线程实现方式允许使用计算成本较高的检测算法,同时仍能保持跟踪线程的实时输出。我们开发的另一种优化方法是根据输入框的大小,使用多个向下采样图像来初始化每个跟踪器;多个向下采样图像允许每个跟踪器为其跟踪的框选择最佳图像大小,而不是将单个向下采样图像用于所有跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信