Joe Pappas, Venkateswara Dasari, Billy E. Geerhart, David M. Alexander, Peng Wang, S. Chaterji
{"title":"Adaptive object detection algorithms for resource constrained autonomous robotic systems","authors":"Joe Pappas, Venkateswara Dasari, Billy E. Geerhart, David M. Alexander, Peng Wang, S. Chaterji","doi":"10.1117/12.3013781","DOIUrl":null,"url":null,"abstract":"We optimized and deployed the adaptive framework Virtuoso that can maintain real-time object detection even when experiencing high contention scenarios. The original Virtuoso framework uses an adaptive algorithm for the detection frame followed by a low-cost algorithm for the tracker frame which uses down-sampled images to reduce computation. One of our optimizations include detaching the single synchronous thread for detection and tracking into two parallel threads. This multi-threaded implementation allows for computationally high-cost detection algorithms to be used while still maintaining real-time output from the tracker thread. Another optimization we developed uses multiple down-sampled images to initialize each tracker based on the size of the input box; the multiple down-sampled images allow each tracker to choose the optimal image size for the box that it is tracking rather than a single down-sampled image being used for all trackers.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":"194 1","pages":"130580C - 130580C-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We optimized and deployed the adaptive framework Virtuoso that can maintain real-time object detection even when experiencing high contention scenarios. The original Virtuoso framework uses an adaptive algorithm for the detection frame followed by a low-cost algorithm for the tracker frame which uses down-sampled images to reduce computation. One of our optimizations include detaching the single synchronous thread for detection and tracking into two parallel threads. This multi-threaded implementation allows for computationally high-cost detection algorithms to be used while still maintaining real-time output from the tracker thread. Another optimization we developed uses multiple down-sampled images to initialize each tracker based on the size of the input box; the multiple down-sampled images allow each tracker to choose the optimal image size for the box that it is tracking rather than a single down-sampled image being used for all trackers.