Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data

Yuqing Liu, Yajie Bao, Peng Cheng, Dan Shen, Genshe Chen, Hao Xu
{"title":"Enhanced robot state estimation using physics-informed neural networks and multimodal proprioceptive data","authors":"Yuqing Liu, Yajie Bao, Peng Cheng, Dan Shen, Genshe Chen, Hao Xu","doi":"10.1117/12.3022666","DOIUrl":null,"url":null,"abstract":"In this study, we introduce an innovative Robot State Estimation (RSE) methodology incorporating a learning-based contact estimation framework for legged robots, which obviates the need for external physical contact sensors. This approach integrates multimodal proprioceptive sensory data, employing a Physics-Informed Neural Network (PINN) in conjunction with an Unscented Kalman Filter (UKF) to enhance the state estimation process. The primary objective of this RSE technique is to calibrate the Inertial Measurement Unit (IMU) effectively and furnish a detailed representation of the robot’s dynamic state. Our methodology exploits the PINN to mitigate IMU drift issues by imposing constraints on the loss function via Ordinary Differential Equations (ODEs). The advantages of utilizing a contact estimator based on proprioceptive sensory data are multifold. Unlike vision-based state estimators, our proprioceptive approach is immune to visual impairments such as obscured or ambiguous environments. Moreover, it circumvents the necessity for dedicated contact sensors—components not universally present on robotic platforms and challenging to integrate without substantial hardware modifications. The contact estimator within our network is trained to discern contact events across various terrains, thereby facilitating resilient proprioceptive odometry. This enables the contact-aided invariant Kalman Filter to produce precise odometric trajectories. Subsequently, the UKF algorithm estimates the robot’s three-dimensional attitude, velocity, and position. Experimental validation of our proposed PINN-based method illustrates its capacity to assimilate data from multiple sensors, effectively reducing the influence of sensor biases by enforcing ODE constraints, all while preserving intrinsic sensor characteristics. When juxtaposed with the employment of the UKF algorithm in isolation, our integrated RSE model demonstrates superior performance in state estimation. This enhanced capability automatically reduces sensor drift impacts during operational deployment, rendering our proposed solution applicable to real-world scenarios.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3022666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we introduce an innovative Robot State Estimation (RSE) methodology incorporating a learning-based contact estimation framework for legged robots, which obviates the need for external physical contact sensors. This approach integrates multimodal proprioceptive sensory data, employing a Physics-Informed Neural Network (PINN) in conjunction with an Unscented Kalman Filter (UKF) to enhance the state estimation process. The primary objective of this RSE technique is to calibrate the Inertial Measurement Unit (IMU) effectively and furnish a detailed representation of the robot’s dynamic state. Our methodology exploits the PINN to mitigate IMU drift issues by imposing constraints on the loss function via Ordinary Differential Equations (ODEs). The advantages of utilizing a contact estimator based on proprioceptive sensory data are multifold. Unlike vision-based state estimators, our proprioceptive approach is immune to visual impairments such as obscured or ambiguous environments. Moreover, it circumvents the necessity for dedicated contact sensors—components not universally present on robotic platforms and challenging to integrate without substantial hardware modifications. The contact estimator within our network is trained to discern contact events across various terrains, thereby facilitating resilient proprioceptive odometry. This enables the contact-aided invariant Kalman Filter to produce precise odometric trajectories. Subsequently, the UKF algorithm estimates the robot’s three-dimensional attitude, velocity, and position. Experimental validation of our proposed PINN-based method illustrates its capacity to assimilate data from multiple sensors, effectively reducing the influence of sensor biases by enforcing ODE constraints, all while preserving intrinsic sensor characteristics. When juxtaposed with the employment of the UKF algorithm in isolation, our integrated RSE model demonstrates superior performance in state estimation. This enhanced capability automatically reduces sensor drift impacts during operational deployment, rendering our proposed solution applicable to real-world scenarios.
利用物理信息神经网络和多模态本体感觉数据增强机器人状态估计功能
在本研究中,我们介绍了一种创新的机器人状态估计(RSE)方法,该方法结合了基于学习的接触估计框架,适用于有腿机器人,无需外部物理接触传感器。这种方法整合了多模态本体感觉数据,采用物理信息神经网络(PINN)和无香卡尔曼滤波器(UKF)来增强状态估计过程。这种 RSE 技术的主要目标是有效校准惯性测量单元 (IMU),并提供机器人动态状态的详细表示。我们的方法利用 PINN,通过常微分方程(ODE)对损失函数施加约束,从而缓解 IMU 漂移问题。利用基于本体感觉数据的接触估计器具有多重优势。与基于视觉的状态估算器不同,我们的本体感觉方法不受视觉障碍(如模糊或含混的环境)的影响。此外,它还避免了专用接触传感器的必要性--这些部件在机器人平台上并不普遍存在,在不对硬件进行重大修改的情况下进行集成具有挑战性。我们网络中的接触估算器经过训练,能够辨别各种地形中的接触事件,从而促进本体感觉里程测量。这使得接触辅助不变卡尔曼滤波器能够生成精确的测距轨迹。随后,UKF 算法会估算出机器人的三维姿态、速度和位置。对我们提出的基于 PINN 的方法进行的实验验证表明,该方法能够吸收来自多个传感器的数据,通过强制执行 ODE 约束,有效减少传感器偏差的影响,同时保留传感器的固有特性。与单独使用 UKF 算法相比,我们的集成 RSE 模型在状态估计方面表现出了卓越的性能。这种增强的能力可自动减少作战部署过程中传感器漂移的影响,使我们提出的解决方案适用于现实世界的各种场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信