Xueqi Qian, Lixin Shen, Dong Yang, Zhiwen Zhang, Zhihong Jin
{"title":"Research on Multimodal Transport of Electronic Documents Based on Blockchain","authors":"Xueqi Qian, Lixin Shen, Dong Yang, Zhiwen Zhang, Zhihong Jin","doi":"10.3390/bdcc8060067","DOIUrl":null,"url":null,"abstract":"Multimodal transport document collaboration is the foundation of multimodal transport operations. Blockchain technology can effectively address issues such as a lack of trust and difficulties in information sharing in current multimodal transport document collaboration. However, in current research on blockchain-based electronic documents, the bottleneck lies in the collaboration aspect of multimodal transport among multiple entities, known as the “one-bill coverage system” collaborative problem. The collaboration problem studied in this paper involves selecting suitable transport routes according to the shipper’s transport needs, and selecting the most suitable specific carrier from numerous carriers. To address the collaboration problem among multiple parties in the multimodal transport “one-bill coverage system”, a multiparty collaboration mechanism is designed. This mechanism includes two aspects: firstly, designing the architecture of the multimodal transport blockchain transport platform, which reengineers the operation process of the “one-bill coverage system” for container multimodal transport; secondly, constructing a multiparty collaboration decision-making model for the “one-bill coverage system” in multimodal transport. The model is solved and analyzed, and the collaboration strategy obtained is embedded in the application layer of the platform. Smart contracts related to the “one-bill coverage system” for multimodal transport are written in the Solidity language and deployed and executed on the Remix platform. The design of this mechanism can effectively improve the collaboration efficiency of participants in the “one-bill coverage system” for multimodal transport.","PeriodicalId":505155,"journal":{"name":"Big Data and Cognitive Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc8060067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multimodal transport document collaboration is the foundation of multimodal transport operations. Blockchain technology can effectively address issues such as a lack of trust and difficulties in information sharing in current multimodal transport document collaboration. However, in current research on blockchain-based electronic documents, the bottleneck lies in the collaboration aspect of multimodal transport among multiple entities, known as the “one-bill coverage system” collaborative problem. The collaboration problem studied in this paper involves selecting suitable transport routes according to the shipper’s transport needs, and selecting the most suitable specific carrier from numerous carriers. To address the collaboration problem among multiple parties in the multimodal transport “one-bill coverage system”, a multiparty collaboration mechanism is designed. This mechanism includes two aspects: firstly, designing the architecture of the multimodal transport blockchain transport platform, which reengineers the operation process of the “one-bill coverage system” for container multimodal transport; secondly, constructing a multiparty collaboration decision-making model for the “one-bill coverage system” in multimodal transport. The model is solved and analyzed, and the collaboration strategy obtained is embedded in the application layer of the platform. Smart contracts related to the “one-bill coverage system” for multimodal transport are written in the Solidity language and deployed and executed on the Remix platform. The design of this mechanism can effectively improve the collaboration efficiency of participants in the “one-bill coverage system” for multimodal transport.