L. Srinivasan, Humaira Nishat, S. Shargunam, Deepak Kumar Nayak, K. Janani
{"title":"Optimizing live video streaming: Integrating 5G, IoT, and cloud computing with machine learning","authors":"L. Srinivasan, Humaira Nishat, S. Shargunam, Deepak Kumar Nayak, K. Janani","doi":"10.1002/itl2.556","DOIUrl":null,"url":null,"abstract":"In this research, we optimize live video broadcast performance by incorporating advanced technologies such as 5G, the Internet of Things (IoT), and cloud computing. Our approach utilizes the Random Forest classifier to categorize data, achieving a 99% precision rate. A comparative study demonstrates that our proposed technique outperforms RCNN and Mask‐RCNN methods in optimizing video streaming efficacy. We show that our method efficiently enhances video streaming quality by integrating machine learning technologies. The combination of 5G, IoT, and cloud computing creates a robust environment for delivering optimized Live video streaming to users. This research underscores the importance of leveraging cutting‐edge technology to address optimization challenges in modern video streaming systems, focusing on the real‐time optimization of video streams in contemporary technological environments.","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1002/itl2.556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we optimize live video broadcast performance by incorporating advanced technologies such as 5G, the Internet of Things (IoT), and cloud computing. Our approach utilizes the Random Forest classifier to categorize data, achieving a 99% precision rate. A comparative study demonstrates that our proposed technique outperforms RCNN and Mask‐RCNN methods in optimizing video streaming efficacy. We show that our method efficiently enhances video streaming quality by integrating machine learning technologies. The combination of 5G, IoT, and cloud computing creates a robust environment for delivering optimized Live video streaming to users. This research underscores the importance of leveraging cutting‐edge technology to address optimization challenges in modern video streaming systems, focusing on the real‐time optimization of video streams in contemporary technological environments.