On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022

Dimitar Ouzounov, G. Khachikyan
{"title":"On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022","authors":"Dimitar Ouzounov, G. Khachikyan","doi":"10.3390/geosciences14060159","DOIUrl":null,"url":null,"abstract":"A joint analysis of solar wind, geomagnetic field, and earthquake catalog data showed that before the catastrophic M = 7.8 and M = 7.5 Kahramanmaras earthquake sequence on 6 February 2023, a closed strong magnetic storm occurred on 7 November 2022, SYM/H = −117 nT. The storm started at 08:04 UT. At this time, the high-latitudinal part of Turkey’s longitudinal region of future epicenters was located under the polar cusp, where the solar wind plasma would directly access the Earth’s environment. The time delay between storm onset and earthquake occurrence was ~91 days. We analyzed all seven strong (M7+) earthquakes from 1967 to 2020 to verify the initial findings. A similar pattern has been revealed for all events. The time delay between magnetic storm onset and earthquake occurrence varies from days to months. To continue these investigations, a retrospective analysis of seismic and other geophysical parameters just after preceded geomagnetic storms in the epicenter areas is desirable.","PeriodicalId":509137,"journal":{"name":"Geosciences","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/geosciences14060159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A joint analysis of solar wind, geomagnetic field, and earthquake catalog data showed that before the catastrophic M = 7.8 and M = 7.5 Kahramanmaras earthquake sequence on 6 February 2023, a closed strong magnetic storm occurred on 7 November 2022, SYM/H = −117 nT. The storm started at 08:04 UT. At this time, the high-latitudinal part of Turkey’s longitudinal region of future epicenters was located under the polar cusp, where the solar wind plasma would directly access the Earth’s environment. The time delay between storm onset and earthquake occurrence was ~91 days. We analyzed all seven strong (M7+) earthquakes from 1967 to 2020 to verify the initial findings. A similar pattern has been revealed for all events. The time delay between magnetic storm onset and earthquake occurrence varies from days to months. To continue these investigations, a retrospective analysis of seismic and other geophysical parameters just after preceded geomagnetic storms in the epicenter areas is desirable.
论地球空间天气对 2023 年 2 月 6 日(土耳其)发生 M7.8/M7.5 级地震的影响,可能与 2022 年 11 月 7 日地磁风暴有关
对太阳风、地磁场和地震目录数据的联合分析表明,在 2023 年 2 月 6 日发生 M = 7.8 和 M = 7.5 的卡赫拉曼马拉什灾难性地震序列之前,2022 年 11 月 7 日发生了一次闭合强磁暴,SYM/H = -117 nT。风暴开始于北京时间 08:04。此时,土耳其未来震中纵向区域的高纬度部分位于极顶之下,太阳风等离子体将直接进入地球环境。从风暴开始到地震发生之间的时间延迟约为 91 天。我们分析了从 1967 年到 2020 年的所有七次强(M7+)地震,以验证最初的发现。所有事件都呈现出类似的模式。磁暴开始和地震发生之间的时间延迟从几天到几个月不等。为了继续进行这些研究,需要对震中地区刚刚发生地磁暴后的地震和其他地球物理参数进行回顾性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信