{"title":"Lengths of factorizations of integer-valued polynomials on Krull domains with prime elements","authors":"Victor Fadinger-Held, Daniel Windisch","doi":"10.1007/s00013-024-02001-0","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>D</i> be a Krull domain admitting a prime element with finite residue field and let <i>K</i> be its quotient field. We show that for all positive integers <i>k</i> and <span>\\(1 < n_1 \\le \\cdots \\le n_k\\)</span>, there exists an integer-valued polynomial on <i>D</i>, that is, an element of <span>\\({{\\,\\textrm{Int}\\,}}(D) = \\{ f \\in K[X] \\mid f(D) \\subseteq D \\}\\)</span>, which has precisely <i>k</i> essentially different factorizations into irreducible elements of <span>\\({{\\,\\textrm{Int}\\,}}(D)\\)</span> whose lengths are exactly <span>\\(n_1, \\ldots , n_k\\)</span>. Using this, we characterize lengths of factorizations when <i>D</i> is a unique factorization domain and therefore also in case <i>D</i> is a discrete valuation domain. This solves an open problem proposed by Cahen, Fontana, Frisch, and Glaz.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02001-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02001-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let D be a Krull domain admitting a prime element with finite residue field and let K be its quotient field. We show that for all positive integers k and \(1 < n_1 \le \cdots \le n_k\), there exists an integer-valued polynomial on D, that is, an element of \({{\,\textrm{Int}\,}}(D) = \{ f \in K[X] \mid f(D) \subseteq D \}\), which has precisely k essentially different factorizations into irreducible elements of \({{\,\textrm{Int}\,}}(D)\) whose lengths are exactly \(n_1, \ldots , n_k\). Using this, we characterize lengths of factorizations when D is a unique factorization domain and therefore also in case D is a discrete valuation domain. This solves an open problem proposed by Cahen, Fontana, Frisch, and Glaz.
设 D 是一个克鲁尔域,包含一个具有有限残差域的素元,K 是它的商域。我们证明,对于所有正整数 k 和 \(1 <;n_1 \le \cdots \le n_k\),在 D 上存在一个整数值多项式,即 \({{\,\textrm{Int}\,}}(D) = \{ f \in K[X] \mid f(D) \subseteq D \}\)的一个元素、其中恰好有 k 个本质上不同的因式分解为 \({{\,\textrm{Int}\,}}(D)\) 的不可还原元素,它们的长度恰好是 \(n_1, \ldots , n_k\)。利用这一点,我们可以描述当 D 是唯一因式分解域时因式分解的长度,因此也可以描述当 D 是离散估值域时因式分解的长度。这解决了卡亨、方塔纳、弗里施和格拉兹提出的一个未决问题。