A Spatial Gaussian-Process Boosting Analysis of Socioeconomic Disparities in Wait-Listing of End-Stage Kidney Disease Patients across the United States

Stats Pub Date : 2024-06-07 DOI:10.3390/stats7020031
Sounak Chakraborty, Tanujit Dey, Lingwei Xiang, Joel T. Adler
{"title":"A Spatial Gaussian-Process Boosting Analysis of Socioeconomic Disparities in Wait-Listing of End-Stage Kidney Disease Patients across the United States","authors":"Sounak Chakraborty, Tanujit Dey, Lingwei Xiang, Joel T. Adler","doi":"10.3390/stats7020031","DOIUrl":null,"url":null,"abstract":"In this study, we employed a novel approach of combining Gaussian processes (GPs) with boosting techniques to model the spatial variability inherent in End-Stage Kidney Disease (ESKD) data. Our use of the Gaussian processes boosting, or GPBoost, methodology underscores the efficacy of this hybrid method in capturing intricate spatial dynamics and enhancing predictive accuracy. Specifically, our analysis demonstrates a notable improvement in out-of-sample prediction accuracy regarding the percentage of the population remaining on the wait list within geographic regions. Furthermore, our investigation unveils race and gender-based factors that significantly influence patient wait-listing. By leveraging the GPBoost approach, we identify these pertinent factors, shedding light on the complex interplay between demographic variables and access to kidney transplantation services. Our findings underscore the imperative for a multifaceted strategy aimed at reducing spatial disparities in kidney transplant wait-listing. Key components of such an approach include mitigating gender disparities, bolstering access to healthcare services, fostering greater awareness of transplantation options, and dismantling structural barriers to care. By addressing these multifactorial challenges, we can strive towards a more equitable and inclusive landscape in kidney transplantation.","PeriodicalId":503278,"journal":{"name":"Stats","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats7020031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we employed a novel approach of combining Gaussian processes (GPs) with boosting techniques to model the spatial variability inherent in End-Stage Kidney Disease (ESKD) data. Our use of the Gaussian processes boosting, or GPBoost, methodology underscores the efficacy of this hybrid method in capturing intricate spatial dynamics and enhancing predictive accuracy. Specifically, our analysis demonstrates a notable improvement in out-of-sample prediction accuracy regarding the percentage of the population remaining on the wait list within geographic regions. Furthermore, our investigation unveils race and gender-based factors that significantly influence patient wait-listing. By leveraging the GPBoost approach, we identify these pertinent factors, shedding light on the complex interplay between demographic variables and access to kidney transplantation services. Our findings underscore the imperative for a multifaceted strategy aimed at reducing spatial disparities in kidney transplant wait-listing. Key components of such an approach include mitigating gender disparities, bolstering access to healthcare services, fostering greater awareness of transplantation options, and dismantling structural barriers to care. By addressing these multifactorial challenges, we can strive towards a more equitable and inclusive landscape in kidney transplantation.
对全美终末期肾病患者候诊名单中社会经济差异的空间高斯过程提升分析
在这项研究中,我们采用了一种将高斯过程(GPs)与增强技术相结合的新方法,对终末期肾病(ESKD)数据中固有的空间变异性进行建模。我们使用的高斯过程提升(GPBoost)方法强调了这种混合方法在捕捉错综复杂的空间动态和提高预测准确性方面的功效。具体来说,我们的分析表明,对于地理区域内仍在等待名单上的人口比例,样本外预测准确率有了显著提高。此外,我们的调查还揭示了基于种族和性别的因素,这些因素对患者的候诊情况有显著影响。通过利用 GPBoost 方法,我们确定了这些相关因素,揭示了人口变量与肾移植服务获取之间复杂的相互作用。我们的研究结果表明,必须采取多方面的策略来减少肾移植等待名单中的空间差异。这种方法的关键组成部分包括:减少性别差异、加强医疗服务的可及性、提高对移植选择的认识以及消除医疗的结构性障碍。通过应对这些多因素挑战,我们可以努力实现肾移植领域更加公平和包容的局面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信