{"title":"Fluorine fixation for spent lithium-ion batteries toward closed-loop lithium recycling","authors":"Shunsuke Kuzuhara, Yuto Yamada, Ayaka Igarashi, Kazuki Fujiwara, Osamu Terakado, Ryo Kasuya","doi":"10.1007/s10163-024-01991-x","DOIUrl":null,"url":null,"abstract":"<div><p>The contamination of F inhibits the recovery of pure Li from spent Li-ion batteries (LIBs). In this study, we extracted F from a cathode material of spent Li-ion batteries by dry and wet processes and investigated the effect on Li recovery. In the dry process, F was removed by calcination at a controlled temperature in the presence of an F-fixing agent. In the wet process, F<sup>−</sup> ions were removed by adding Ca(OH)<sub>2</sub> as a F-fixing agent to F-containing aqueous Li solution. Through sequential calcination (500 °C) and water leaching cycles, we achieved high Li- and F-leaching efficiencies of 87 and 93%, respectively. When the second calcination temperature (500 °C) was higher than the first (350 °C), a high-purity Li solution was attained from water leaching after the second calcination, in which the F<sup>−</sup> concentration was approximately 1/10th that of the Li<sup>+</sup> concentration. Furthermore, the wet process successfully removed 98% of F from a F-containing aqueous Li solution by adding Ca(OH)<sub>2</sub>. Thus, pure Li was successfully extracted from spent LIBs by a carbothermal process using calcium salt and water leaching treatment. The proposed acid-free process facilitates the recovery of Li from spent LIBs, which is promising for the closed-loop recycling of Li.</p></div>","PeriodicalId":643,"journal":{"name":"Journal of Material Cycles and Waste Management","volume":"26 5","pages":"2696 - 2705"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Material Cycles and Waste Management","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10163-024-01991-x","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The contamination of F inhibits the recovery of pure Li from spent Li-ion batteries (LIBs). In this study, we extracted F from a cathode material of spent Li-ion batteries by dry and wet processes and investigated the effect on Li recovery. In the dry process, F was removed by calcination at a controlled temperature in the presence of an F-fixing agent. In the wet process, F− ions were removed by adding Ca(OH)2 as a F-fixing agent to F-containing aqueous Li solution. Through sequential calcination (500 °C) and water leaching cycles, we achieved high Li- and F-leaching efficiencies of 87 and 93%, respectively. When the second calcination temperature (500 °C) was higher than the first (350 °C), a high-purity Li solution was attained from water leaching after the second calcination, in which the F− concentration was approximately 1/10th that of the Li+ concentration. Furthermore, the wet process successfully removed 98% of F from a F-containing aqueous Li solution by adding Ca(OH)2. Thus, pure Li was successfully extracted from spent LIBs by a carbothermal process using calcium salt and water leaching treatment. The proposed acid-free process facilitates the recovery of Li from spent LIBs, which is promising for the closed-loop recycling of Li.
期刊介绍:
The Journal of Material Cycles and Waste Management has a twofold focus: research in technical, political, and environmental problems of material cycles and waste management; and information that contributes to the development of an interdisciplinary science of material cycles and waste management. Its aim is to develop solutions and prescriptions for material cycles.
The journal publishes original articles, reviews, and invited papers from a wide range of disciplines related to material cycles and waste management.
The journal is published in cooperation with the Japan Society of Material Cycles and Waste Management (JSMCWM) and the Korea Society of Waste Management (KSWM).