Hongyang Li, Mingxin Zhu, Fangxin Li, Martin Skitmore
{"title":"Solving flood problems with deep learning technology: Research status, strategies, and future directions","authors":"Hongyang Li, Mingxin Zhu, Fangxin Li, Martin Skitmore","doi":"10.1002/sd.3074","DOIUrl":null,"url":null,"abstract":"As a frequent and devastating natural disaster worldwide, floods are influenced by complex factors. Building flood models for simulating, monitoring, and forecasting floods is crucial to reduce the risk of disasters and minimize damage to people and property. With advancements in computing power and the impressive capabilities of deep learning in such areas as classification and prediction, there has been growing interest in using this technology in flood research. There is also a growing body of research into building flood data‐driven models with deep learning. Based on this, this study adopts a mixed‐method approach of bibliometric and qualitative analyses to provide an overview of the research. The research status is revealed in a bibliometric visualization, where the research objects are defined from the flood perspective, and the research strategies are explained from the deep learning perspective to provide a comprehensive and in‐depth understanding of the flood problem and how to apply deep learning to solve it. In addition, the study reflects on the future direction of improvement and innovation needed to promote the further development and exploration of deep learning in flood research.","PeriodicalId":48174,"journal":{"name":"Sustainable Development","volume":null,"pages":null},"PeriodicalIF":9.9000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Development","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/sd.3074","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENT STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
As a frequent and devastating natural disaster worldwide, floods are influenced by complex factors. Building flood models for simulating, monitoring, and forecasting floods is crucial to reduce the risk of disasters and minimize damage to people and property. With advancements in computing power and the impressive capabilities of deep learning in such areas as classification and prediction, there has been growing interest in using this technology in flood research. There is also a growing body of research into building flood data‐driven models with deep learning. Based on this, this study adopts a mixed‐method approach of bibliometric and qualitative analyses to provide an overview of the research. The research status is revealed in a bibliometric visualization, where the research objects are defined from the flood perspective, and the research strategies are explained from the deep learning perspective to provide a comprehensive and in‐depth understanding of the flood problem and how to apply deep learning to solve it. In addition, the study reflects on the future direction of improvement and innovation needed to promote the further development and exploration of deep learning in flood research.
期刊介绍:
Sustainable Development is a publication that takes an interdisciplinary approach to explore and propose strategies for achieving sustainable development. Our aim is to discuss and address the challenges associated with sustainable development and the Sustainable Development Goals. All submissions are subjected to a thorough review process to ensure that our readers receive valuable and original content of the highest caliber.