Attractor flow versus Hesse flow in wall-crossing structures

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Qiang Wang
{"title":"Attractor flow versus Hesse flow in wall-crossing structures","authors":"Qiang Wang","doi":"10.1007/s11005-024-01830-y","DOIUrl":null,"url":null,"abstract":"<div><p>We recast the physics discussions in the paper of Van den Bleeken (J High Energy Phys 2012(2):67, 2012) within the context of wall-crossing structure à la Kontsevich and Soibelman (Homol Mirror Symmetry Trop Geom, 2014. https://doi.org/10.1007/978-3-319-06514-4_6). In particular, we compare the Hesse flow given in Van den Bleeken (J High Energy Phys 2012(2):67, 2012) and the attractor flow on the base of the complex integrable system, and show that both can be used in the formalism of wall-crossing structure. We also propose the notions of dual Hesse flow and dual attractor flow, and show that under the rotation of the <span>\\(\\mathbb {Z}\\)</span>-affine structure, the Hesse flow can be transformed into the dual attractor flow, while the attractor flow into the dual Hesse flow. This suggests its possible use in Mirror Symmetry.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01830-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We recast the physics discussions in the paper of Van den Bleeken (J High Energy Phys 2012(2):67, 2012) within the context of wall-crossing structure à la Kontsevich and Soibelman (Homol Mirror Symmetry Trop Geom, 2014. https://doi.org/10.1007/978-3-319-06514-4_6). In particular, we compare the Hesse flow given in Van den Bleeken (J High Energy Phys 2012(2):67, 2012) and the attractor flow on the base of the complex integrable system, and show that both can be used in the formalism of wall-crossing structure. We also propose the notions of dual Hesse flow and dual attractor flow, and show that under the rotation of the \(\mathbb {Z}\)-affine structure, the Hesse flow can be transformed into the dual attractor flow, while the attractor flow into the dual Hesse flow. This suggests its possible use in Mirror Symmetry.

Abstract Image

Abstract Image

穿墙结构中的吸引流与黑塞流
我们在 Kontsevich 和 Soibelman (Homol Mirror Symmetry Trop Geom, 2014. https://doi.org/10.1007/978-3-319-06514-4_6) 的壁交结构的背景下重构了 Van den Bleeken (J High Energy Phys 2012(2):67, 2012) 论文中的物理学讨论。特别是,我们比较了 Van den Bleeken(《高能物理杂志》,2012(2):67,2012 年)给出的海塞流和复杂可积分系统基础上的吸引流,并证明两者都可用于壁交结构的形式主义。我们还提出了对偶黑塞流和对偶吸引流的概念,并证明了在\(\mathbb {Z}\)-affine 结构的旋转作用下,黑塞流可以转化为对偶吸引流,而吸引流则可以转化为对偶黑塞流。这表明它可能用于镜像对称。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信