A Framework for Enhancing Social Media Misinformation Detection with Topical-Tactics

Benjamin E. Bagozzi, Rajni Goel, Brunilda Lugo-De-Fabritz, Kelly Knickmeier-Cummings, Karthik Balasubramanian
{"title":"A Framework for Enhancing Social Media Misinformation Detection with Topical-Tactics","authors":"Benjamin E. Bagozzi, Rajni Goel, Brunilda Lugo-De-Fabritz, Kelly Knickmeier-Cummings, Karthik Balasubramanian","doi":"10.1145/3670694","DOIUrl":null,"url":null,"abstract":"Recent years have seen advancements in machine learning methods for the detection of misinformation on social media. Yet, these methods still often ignore or improperly incorporate key information on the topical-tactics used by misinformation agents. To what extent does this affect the (non)detection of misinformation? We investigate how supervised machine learning approaches can be enhanced to better detect misinformation on social media. Our aim in this regard is to enhance the abilities of academics and practitioners to understand, anticipate, and preempt the sources and impacts of misinformation on the web. To do so, this paper leverages a large sample of verified Russian state-based misinformation tweets and non-misinformation tweets from Twitter. It first assesses standard supervised approaches for detecting Twitter-based misinformation both quantitatively (with respect to classification) and qualitatively (with respect to topical-tactics of Russian misinformation). It then presents a novel framework for integrating topical-tactics of misinformation into standard ‘bag of words’-oriented classification approaches in a manner that avoids data leakage and related measurement challenges. We find that doing so substantially improves the out-of-sample detection of Russian state-based misinformation tweets.","PeriodicalId":202552,"journal":{"name":"Digital Threats: Research and Practice","volume":" 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Threats: Research and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3670694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recent years have seen advancements in machine learning methods for the detection of misinformation on social media. Yet, these methods still often ignore or improperly incorporate key information on the topical-tactics used by misinformation agents. To what extent does this affect the (non)detection of misinformation? We investigate how supervised machine learning approaches can be enhanced to better detect misinformation on social media. Our aim in this regard is to enhance the abilities of academics and practitioners to understand, anticipate, and preempt the sources and impacts of misinformation on the web. To do so, this paper leverages a large sample of verified Russian state-based misinformation tweets and non-misinformation tweets from Twitter. It first assesses standard supervised approaches for detecting Twitter-based misinformation both quantitatively (with respect to classification) and qualitatively (with respect to topical-tactics of Russian misinformation). It then presents a novel framework for integrating topical-tactics of misinformation into standard ‘bag of words’-oriented classification approaches in a manner that avoids data leakage and related measurement challenges. We find that doing so substantially improves the out-of-sample detection of Russian state-based misinformation tweets.
利用主题策略加强社交媒体误报检测的框架
近年来,用于检测社交媒体上错误信息的机器学习方法取得了进步。然而,这些方法仍然经常忽略或不适当地纳入有关误报代理所使用的热点策略的关键信息。这会在多大程度上影响(非)误导信息的检测?我们研究了如何加强有监督的机器学习方法,以更好地检测社交媒体上的错误信息。在这方面,我们的目标是提高学术界和从业人员的能力,以了解、预测和预防网络上的错误信息的来源和影响。为此,本文利用了推特上大量经过验证的基于俄罗斯国家的虚假信息推文和非虚假信息推文样本。本文首先从定量(分类方面)和定性(俄罗斯虚假信息的话题策略方面)两个方面评估了检测基于 Twitter 的虚假信息的标准监督方法。然后,它提出了一个新颖的框架,将虚假信息的话题策略整合到以 "词袋 "为导向的标准分类方法中,从而避免了数据泄露和相关的测量挑战。我们发现,这样做大大提高了对俄罗斯国家虚假信息推文的样本外检测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信