Myriam Álvarez-Yaulema, María Ponce-Valle, Jhonny Alban-Alcivar, Luis Zambrano-Salazar
{"title":"Revisión de modelos estadísticos para pronosticar el desempeño académico en estudiantes universitarios","authors":"Myriam Álvarez-Yaulema, María Ponce-Valle, Jhonny Alban-Alcivar, Luis Zambrano-Salazar","doi":"10.56048/mqr20225.8.2.2024.3806-3823","DOIUrl":null,"url":null,"abstract":"La predicción del rendimiento académico en estudiantes universitarios ha despertado un interés creciente, dado su impacto significativo en la formulación de estrategias pedagógicas y políticas educativas. Con los avances en técnicas estadísticas y el aprendizaje automático, se han creado diversos modelos que permiten prever el desempeño académico, identificando factores y patrones de comportamiento asociados al éxito estudiantil. Los objetivos centrales, en primer lugar, realizar una evaluación y comparación de las metodologías estadísticas y de aprendizaje automático más frecuentemente empleadas en la predicción del rendimiento académico, con el objetivo de discernir sus puntos fuertes y áreas de mejora. En segundo lugar, examinar la exactitud y relevancia de estos modelos en diversos entornos educativos y grupos estudiantiles. Se realizó una revisión descriptiva para desempeñar una comprensión exhaustiva de la investigación relacionada, que proporciona una visión panorámica y detallada de los modelos estadísticos utilizados para pronosticar el desempeño académico en estudiantes. Esta revisión permitió identificar y analizar las características, fortalezas y limitaciones de cada modelo, así como también su aplicabilidad en diferentes contextos educativos y poblaciones estudiantiles. se han alcanzado varios hallazgos significativos. Se ha observado una amplia variedad de metodologías estadísticas y de aprendizaje automático empleadas en esta tarea, que van desde modelos lineales hasta algoritmos más complejos de aprendizaje profundo. Esta diversidad destaca la importancia de realizar una evaluación minuciosa y comparativa de estas técnicas para identificar tanto sus fortalezas como sus áreas de mejora, especialmente en lo que respecta a su precisión y su aplicabilidad en distintos contextos educativos. \n ","PeriodicalId":506880,"journal":{"name":"MQRInvestigar","volume":" 36","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MQRInvestigar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56048/mqr20225.8.2.2024.3806-3823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
La predicción del rendimiento académico en estudiantes universitarios ha despertado un interés creciente, dado su impacto significativo en la formulación de estrategias pedagógicas y políticas educativas. Con los avances en técnicas estadísticas y el aprendizaje automático, se han creado diversos modelos que permiten prever el desempeño académico, identificando factores y patrones de comportamiento asociados al éxito estudiantil. Los objetivos centrales, en primer lugar, realizar una evaluación y comparación de las metodologías estadísticas y de aprendizaje automático más frecuentemente empleadas en la predicción del rendimiento académico, con el objetivo de discernir sus puntos fuertes y áreas de mejora. En segundo lugar, examinar la exactitud y relevancia de estos modelos en diversos entornos educativos y grupos estudiantiles. Se realizó una revisión descriptiva para desempeñar una comprensión exhaustiva de la investigación relacionada, que proporciona una visión panorámica y detallada de los modelos estadísticos utilizados para pronosticar el desempeño académico en estudiantes. Esta revisión permitió identificar y analizar las características, fortalezas y limitaciones de cada modelo, así como también su aplicabilidad en diferentes contextos educativos y poblaciones estudiantiles. se han alcanzado varios hallazgos significativos. Se ha observado una amplia variedad de metodologías estadísticas y de aprendizaje automático empleadas en esta tarea, que van desde modelos lineales hasta algoritmos más complejos de aprendizaje profundo. Esta diversidad destaca la importancia de realizar una evaluación minuciosa y comparativa de estas técnicas para identificar tanto sus fortalezas como sus áreas de mejora, especialmente en lo que respecta a su precisión y su aplicabilidad en distintos contextos educativos.