Analyzing Time series by using Data mining

Prof. Dr. Husam Abulrazzak, Fatma Hassan Al-Rubbiay
{"title":"Analyzing Time series by using Data mining","authors":"Prof. Dr. Husam Abulrazzak, Fatma Hassan Al-Rubbiay","doi":"10.31272/jae.i139.1099","DOIUrl":null,"url":null,"abstract":"Algorithms and complex data analysis techniques are used in multiple fields that are expanding daily, and with it the challenges in facing multiple and more complex data types, and the directions of exploration research vary according to the diversity of these fields, and their use is increasing in the modern era in the field of artificial intelligence, which aims to facilitate human life in various fields. Mining of complex data types includes mining of time series, symbolic chains, and biological chains, in addition to mining of graphs, computer networks, mobile data, text mining, and data streams.","PeriodicalId":309748,"journal":{"name":"Journal of Administration and Economics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Administration and Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31272/jae.i139.1099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Algorithms and complex data analysis techniques are used in multiple fields that are expanding daily, and with it the challenges in facing multiple and more complex data types, and the directions of exploration research vary according to the diversity of these fields, and their use is increasing in the modern era in the field of artificial intelligence, which aims to facilitate human life in various fields. Mining of complex data types includes mining of time series, symbolic chains, and biological chains, in addition to mining of graphs, computer networks, mobile data, text mining, and data streams.
利用数据挖掘分析时间序列
算法和复杂数据分析技术被应用于多个领域,这些领域每天都在不断扩大,随之而来的是面对多种多样、更加复杂的数据类型的挑战,探索研究的方向也因这些领域的多样性而各不相同,在以促进人类各领域生活为目标的现代人工智能领域,算法和复杂数据分析技术的应用越来越多。复杂数据类型的挖掘包括时间序列、符号链和生物链的挖掘,此外还有图、计算机网络、移动数据、文本挖掘和数据流的挖掘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信