Performance and hydrodynamic study of a new multi-stage solar photoreactor with immobilized ZnO for synthetic wastewater treatment

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Belgassim Boutra, Aicha Sebti, Sarah Mahidine, Mohamed Trari
{"title":"Performance and hydrodynamic study of a new multi-stage solar photoreactor with immobilized ZnO for synthetic wastewater treatment","authors":"Belgassim Boutra,&nbsp;Aicha Sebti,&nbsp;Sarah Mahidine,&nbsp;Mohamed Trari","doi":"10.1002/ep.14444","DOIUrl":null,"url":null,"abstract":"<p>This study aims to design a new multi-stage photoreactor with immobilized ZnO and assess its performance in reducing textile wastewater toxicity using solar energy. The electric conductivity measurement is retained as a detection method to obtain the residence time distribution (RTD) function. The RTD is then used to characterize the hydrodynamic behavior of the photoreactor and to evaluate its deviation from the distribution curves of ideal reactors. Solar experiments are conducted to demonstrate the performance of this multistage reactor towards the degradation of a textile azo dye namely Solophenyl Red 3BL (SR 3BL). The influence of the flow rate and the SR 3BL initial concentration (C<sub>O</sub>) are considered. The variation of the flow rate slightly influences the SR 3BL photodegradation efficiency and it is inversely proportional to its concentration. The study of the reuse of the immobilized catalyst shows that the degradation efficiency of 98% is reached even after multiple photocatalytic cycles. The figure of merit collector area per order was in the range of 35 to 110 <span></span><math>\n <mrow>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n <mo>/</mo>\n <msup>\n <mi>m</mi>\n <mn>3</mn>\n </msup>\n <mtext>order</mtext>\n </mrow></math>. This result provides useful information for scaling up and estimating energy efficiency of the reactor.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to design a new multi-stage photoreactor with immobilized ZnO and assess its performance in reducing textile wastewater toxicity using solar energy. The electric conductivity measurement is retained as a detection method to obtain the residence time distribution (RTD) function. The RTD is then used to characterize the hydrodynamic behavior of the photoreactor and to evaluate its deviation from the distribution curves of ideal reactors. Solar experiments are conducted to demonstrate the performance of this multistage reactor towards the degradation of a textile azo dye namely Solophenyl Red 3BL (SR 3BL). The influence of the flow rate and the SR 3BL initial concentration (CO) are considered. The variation of the flow rate slightly influences the SR 3BL photodegradation efficiency and it is inversely proportional to its concentration. The study of the reuse of the immobilized catalyst shows that the degradation efficiency of 98% is reached even after multiple photocatalytic cycles. The figure of merit collector area per order was in the range of 35 to 110 m 2 / m 3 order . This result provides useful information for scaling up and estimating energy efficiency of the reactor.

用于合成废水处理的新型多级固定氧化锌太阳能光反应器的性能和流体力学研究
本研究旨在设计一种新型多级光反应器,其中包含固定化氧化锌,并评估其在利用太阳能降低纺织废水毒性方面的性能。电导率测量作为一种检测方法被保留下来,以获得停留时间分布(RTD)函数。然后利用 RTD 来描述光反应器的流体动力学行为,并评估其与理想反应器分布曲线的偏差。太阳能实验证明了这种多级反应器在降解纺织品偶氮染料(即 Solophenyl Red 3BL (SR 3BL))方面的性能。实验考虑了流速和 SR 3BL 初始浓度 (CO) 的影响。流速的变化对 SR 3BL 的光降解效率略有影响,且与浓度成反比。对固定催化剂重复使用的研究表明,即使经过多次光催化循环,降解效率也能达到 98%。每阶收集器面积的优越性在 35 到 110 之间。这一结果为扩大反应器的规模和估算能效提供了有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信