Chang-Qing Ye, Hong Jiang, Chen-Ping Zeng, Hao-Xin Shi, Zhan-Peng Tang
{"title":"Sum-rate maximization for downlink multiuser MISO URLLC system aided by IRS with discrete phase shifters","authors":"Chang-Qing Ye, Hong Jiang, Chen-Ping Zeng, Hao-Xin Shi, Zhan-Peng Tang","doi":"10.1049/cmu2.12790","DOIUrl":null,"url":null,"abstract":"<p>Intelligent reflecting surface (IRS) has recently been considered as a potential technology for realizing ultra-reliable and low-latency (URLLC) in wireless networks. This paper proposes a resource optimization scheme to maximize the sum-rate for an IRS-assisted downlink multiuser multi-input single-output (MISO) URLLC system. For the perfect CSI scenario, we jointly optimize each user's block-length and packet-error probability, the precoding vectors at the base station (BS), and the passive beamforming with discrete phase shifts at the IRS. Given the problem's complexity, we design a computationally efficient iterative algorithm using successive convex approximation (SCA) and semidefinite relaxation (SDR) techniques to obtain a locally optimal solution. Specifically, for the imperfect CSI scenario, we construct a robust resource optimization problem model and incorporate the S-procedure to address the impact of channel uncertainty, proposing an iterative algorithm based on the alternating optimization (AO) method to achieve a locally optimal solution. Simulation results demonstrate that: 1) An IRS equipped with a 2-bit quantized resolution phase shifter is sufficient to achieve a system sum-rate comparable to that of an ideal phase shifter; 2) Compared to other Baseline schemes, Algorithm 2 exhibits better robustness and superior performance gains under imperfect CSI.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"18 12","pages":"744-758"},"PeriodicalIF":1.5000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.12790","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.12790","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Intelligent reflecting surface (IRS) has recently been considered as a potential technology for realizing ultra-reliable and low-latency (URLLC) in wireless networks. This paper proposes a resource optimization scheme to maximize the sum-rate for an IRS-assisted downlink multiuser multi-input single-output (MISO) URLLC system. For the perfect CSI scenario, we jointly optimize each user's block-length and packet-error probability, the precoding vectors at the base station (BS), and the passive beamforming with discrete phase shifts at the IRS. Given the problem's complexity, we design a computationally efficient iterative algorithm using successive convex approximation (SCA) and semidefinite relaxation (SDR) techniques to obtain a locally optimal solution. Specifically, for the imperfect CSI scenario, we construct a robust resource optimization problem model and incorporate the S-procedure to address the impact of channel uncertainty, proposing an iterative algorithm based on the alternating optimization (AO) method to achieve a locally optimal solution. Simulation results demonstrate that: 1) An IRS equipped with a 2-bit quantized resolution phase shifter is sufficient to achieve a system sum-rate comparable to that of an ideal phase shifter; 2) Compared to other Baseline schemes, Algorithm 2 exhibits better robustness and superior performance gains under imperfect CSI.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf