{"title":"Furfural and Levulinic Acid: Synthesis of Platform Molecules from Keggin Heteropolyacid-Catalyzed Biomass Conversion Reactions","authors":"M. J. da Silva, A. A. Rodrigues, D. C. Batalha","doi":"10.3390/reactions5020019","DOIUrl":null,"url":null,"abstract":"Among the different polyoxometalate compounds, Keggin heteropolyacids have been extensively used as catalysts in several acid-catalyzed reactions, due to their strong strength of Bronsted acidity. These metal–oxygen clusters have a highly versatile structure that allows their conversion to derivatives, which are catalysts that are much more efficient than their precursors, with a greater catalytic activity in a plethora of reactions of industrial interest. Particularly, due to the inevitable exhaustion of fossil sources, reactions to valorize biomass have attracted significant attention, since it is a precious renewable raw material that can provide fine chemicals or fuels, minimizing our dependence on petroproducts. Biorefinery processes can produce platform molecules to achieve this goal. In this review, the recent advances achieved in the development of routes to converting biomass feedstocks to levulinic acid and furfural, which are valuable ingredients in biorefinery processes, using Keggin heteropolyacid catalysts were assessed.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reactions5020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Among the different polyoxometalate compounds, Keggin heteropolyacids have been extensively used as catalysts in several acid-catalyzed reactions, due to their strong strength of Bronsted acidity. These metal–oxygen clusters have a highly versatile structure that allows their conversion to derivatives, which are catalysts that are much more efficient than their precursors, with a greater catalytic activity in a plethora of reactions of industrial interest. Particularly, due to the inevitable exhaustion of fossil sources, reactions to valorize biomass have attracted significant attention, since it is a precious renewable raw material that can provide fine chemicals or fuels, minimizing our dependence on petroproducts. Biorefinery processes can produce platform molecules to achieve this goal. In this review, the recent advances achieved in the development of routes to converting biomass feedstocks to levulinic acid and furfural, which are valuable ingredients in biorefinery processes, using Keggin heteropolyacid catalysts were assessed.