Single‐Step One‐Pot Synthesis of NiCo2O4/Molybdate Nanocomposites for Flexible Supercapacitor Electrodes

V. Somsongkul, P. Chirawatkul, Victor Duffort, Soukaina Mountadir, E. Capoen, R. Vannier, C. Kongmark
{"title":"Single‐Step One‐Pot Synthesis of NiCo2O4/Molybdate Nanocomposites for Flexible Supercapacitor Electrodes","authors":"V. Somsongkul, P. Chirawatkul, Victor Duffort, Soukaina Mountadir, E. Capoen, R. Vannier, C. Kongmark","doi":"10.1002/pssa.202400002","DOIUrl":null,"url":null,"abstract":"Energy storage technology plays a critical role in integrating variable energy sources into the grid and ensuring energy consistency. Electrochemical supercapacitors are one of the most promising energy storage devices, as they present multiple advantages of high power density, rapid charge/discharge characteristics, and long‐term cycle stability. Herein, the NiCo2O4/molybdate nanocomposites are developed as electrode materials for supercapacitor applications. The NiCo2O4/molybdate nanocomposites are synthesized by a facile single‐pot hydrothermal method and are coated on a carbon cloth substrate to form flexible supercapacitor electrodes. The structures, chemical compositions, morphologies, and textural properties of these materials are carefully studied by X‐Ray diffraction, X‐Ray absorption spectroscopy, scanning electron microscopy/energy‐dispersive X‐Ray spectroscopy mapping, and N2 adsorption–desorption isotherms. The formation of spinel NiCo2O4 nanorods decorated with molybdate (AMoO4, A = Co, Ni) particles is confirmed for all samples. The NiCo2O4/CoMoO4 electrode exhibits pseudocapacitive behavior and provides the highest specific capacitance (287.28 F g−1 at current density 6 A g−1), about 5.5 times as high as that of NiCo2O4, with excellent cycle stability (107% specific capacitance retention after 1000 charge/discharge cycles at 1 A g−1). Therefore, the NiCo2O4/CoMoO4 composites can be considered as a promising pseudocapacitor electrode material.","PeriodicalId":20150,"journal":{"name":"physica status solidi (a)","volume":" 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"physica status solidi (a)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pssa.202400002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Energy storage technology plays a critical role in integrating variable energy sources into the grid and ensuring energy consistency. Electrochemical supercapacitors are one of the most promising energy storage devices, as they present multiple advantages of high power density, rapid charge/discharge characteristics, and long‐term cycle stability. Herein, the NiCo2O4/molybdate nanocomposites are developed as electrode materials for supercapacitor applications. The NiCo2O4/molybdate nanocomposites are synthesized by a facile single‐pot hydrothermal method and are coated on a carbon cloth substrate to form flexible supercapacitor electrodes. The structures, chemical compositions, morphologies, and textural properties of these materials are carefully studied by X‐Ray diffraction, X‐Ray absorption spectroscopy, scanning electron microscopy/energy‐dispersive X‐Ray spectroscopy mapping, and N2 adsorption–desorption isotherms. The formation of spinel NiCo2O4 nanorods decorated with molybdate (AMoO4, A = Co, Ni) particles is confirmed for all samples. The NiCo2O4/CoMoO4 electrode exhibits pseudocapacitive behavior and provides the highest specific capacitance (287.28 F g−1 at current density 6 A g−1), about 5.5 times as high as that of NiCo2O4, with excellent cycle stability (107% specific capacitance retention after 1000 charge/discharge cycles at 1 A g−1). Therefore, the NiCo2O4/CoMoO4 composites can be considered as a promising pseudocapacitor electrode material.
一步法合成用于柔性超级电容器电极的镍钴氧化物/钼酸盐纳米复合材料
储能技术在将可变能源纳入电网和确保能源一致性方面发挥着至关重要的作用。电化学超级电容器具有高功率密度、快速充放电特性和长期循环稳定性等多重优势,是最有前途的储能设备之一。本文开发了镍钴氧化物/钼酸盐纳米复合材料作为超级电容器应用的电极材料。镍钴氧化物/钼酸盐纳米复合材料采用简便的单锅水热法合成,并涂覆在碳布基底上形成柔性超级电容器电极。通过 X 射线衍射、X 射线吸收光谱、扫描电子显微镜/能量色散 X 射线光谱图和 N2 吸附-解吸等温线,对这些材料的结构、化学成分、形态和纹理特性进行了仔细研究。所有样品都证实形成了以钼酸盐(AMoO4,A = Co、Ni)颗粒装饰的尖晶石镍钴氧化物纳米棒。NiCo2O4/CoMoO4 电极表现出假电容行为,提供最高的比电容(电流密度为 6 A g-1 时为 287.28 F g-1),约为 NiCo2O4 的 5.5 倍,并具有出色的循环稳定性(在 1 A g-1 下充放电 1000 次后比电容保持率为 107%)。因此,NiCo2O4/CoMoO4 复合材料可被视为一种前景广阔的伪电容器电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信