Glykeria Kyrou, Vasileios Charilogis, Ioannis G. Tsoulos
{"title":"Improving the Giant-Armadillo Optimization Method","authors":"Glykeria Kyrou, Vasileios Charilogis, Ioannis G. Tsoulos","doi":"10.3390/analytics3020013","DOIUrl":null,"url":null,"abstract":"Global optimization is widely adopted presently in a variety of practical and scientific problems. In this context, a group of widely used techniques are evolutionary techniques. A relatively new evolutionary technique in this direction is that of Giant-Armadillo Optimization, which is based on the hunting strategy of giant armadillos. In this paper, modifications to this technique are proposed, such as the periodic application of a local minimization method as well as the use of modern termination techniques based on statistical observations. The proposed modifications have been tested on a wide series of test functions available from the relevant literature and compared against other evolutionary methods.","PeriodicalId":512104,"journal":{"name":"Analytics","volume":" 963","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics3020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Global optimization is widely adopted presently in a variety of practical and scientific problems. In this context, a group of widely used techniques are evolutionary techniques. A relatively new evolutionary technique in this direction is that of Giant-Armadillo Optimization, which is based on the hunting strategy of giant armadillos. In this paper, modifications to this technique are proposed, such as the periodic application of a local minimization method as well as the use of modern termination techniques based on statistical observations. The proposed modifications have been tested on a wide series of test functions available from the relevant literature and compared against other evolutionary methods.