Improving the Giant-Armadillo Optimization Method

Analytics Pub Date : 2024-06-10 DOI:10.3390/analytics3020013
Glykeria Kyrou, Vasileios Charilogis, Ioannis G. Tsoulos
{"title":"Improving the Giant-Armadillo Optimization Method","authors":"Glykeria Kyrou, Vasileios Charilogis, Ioannis G. Tsoulos","doi":"10.3390/analytics3020013","DOIUrl":null,"url":null,"abstract":"Global optimization is widely adopted presently in a variety of practical and scientific problems. In this context, a group of widely used techniques are evolutionary techniques. A relatively new evolutionary technique in this direction is that of Giant-Armadillo Optimization, which is based on the hunting strategy of giant armadillos. In this paper, modifications to this technique are proposed, such as the periodic application of a local minimization method as well as the use of modern termination techniques based on statistical observations. The proposed modifications have been tested on a wide series of test functions available from the relevant literature and compared against other evolutionary methods.","PeriodicalId":512104,"journal":{"name":"Analytics","volume":" 963","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics3020013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global optimization is widely adopted presently in a variety of practical and scientific problems. In this context, a group of widely used techniques are evolutionary techniques. A relatively new evolutionary technique in this direction is that of Giant-Armadillo Optimization, which is based on the hunting strategy of giant armadillos. In this paper, modifications to this technique are proposed, such as the periodic application of a local minimization method as well as the use of modern termination techniques based on statistical observations. The proposed modifications have been tested on a wide series of test functions available from the relevant literature and compared against other evolutionary methods.
改进巨人-阿玛迪略优化方法
全局优化目前被广泛应用于各种实际问题和科学问题。在这方面,进化技术是一组广泛使用的技术。巨犰狳优化技术是这方面一种相对较新的进化技术,它以巨犰狳的狩猎策略为基础。本文提出了对这一技术的修改建议,如定期应用局部最小化方法,以及使用基于统计观测的现代终止技术。我们在相关文献中提供的一系列测试函数上对所提出的修改进行了测试,并与其他进化方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信