Axiomatization of modal logic with counting

Pub Date : 2024-06-10 DOI:10.1093/jigpal/jzae079
Xiaoxuan Fu, Zhi-Hua Zhao
{"title":"Axiomatization of modal logic with counting","authors":"Xiaoxuan Fu, Zhi-Hua Zhao","doi":"10.1093/jigpal/jzae079","DOIUrl":null,"url":null,"abstract":"\n Modal logic with counting is obtained from basic modal logic by adding cardinality comparison formulas of the form $ \\#\\varphi \\succsim \\#\\psi $, stating that the cardinality of successors satisfying $ \\varphi $ is larger than or equal to the cardinality of successors satisfying $ \\psi $. It is different from graded modal logic where basic modal logic is extended with formulas of the form $ \\Diamond _{k}\\varphi $ stating that there are at least $ k$-many different successors satisfying $ \\varphi $. In this paper, we investigate the axiomatization of ML(#) with respect to different frame classes, such as image-finite frames and arbitrary frames. Drawing inspiration from existing works, we employ a similar proof strategy that uses the characterization of binary relations on finite Boolean algebras capable of representing generalized probability measures or finite (respectively arbitrary) cardinality measures. Our main result shows that any formula not provable in the Hilbert system can be refuted within a finite (respectively arbitrary) cardinality measure Kripke frame with a finite domain. We then transform this finite (respectively arbitrary) cardinality measure Kripke frame into a Kripke frame in the corresponding class, refuting the unprovable formula.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jigpal/jzae079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modal logic with counting is obtained from basic modal logic by adding cardinality comparison formulas of the form $ \#\varphi \succsim \#\psi $, stating that the cardinality of successors satisfying $ \varphi $ is larger than or equal to the cardinality of successors satisfying $ \psi $. It is different from graded modal logic where basic modal logic is extended with formulas of the form $ \Diamond _{k}\varphi $ stating that there are at least $ k$-many different successors satisfying $ \varphi $. In this paper, we investigate the axiomatization of ML(#) with respect to different frame classes, such as image-finite frames and arbitrary frames. Drawing inspiration from existing works, we employ a similar proof strategy that uses the characterization of binary relations on finite Boolean algebras capable of representing generalized probability measures or finite (respectively arbitrary) cardinality measures. Our main result shows that any formula not provable in the Hilbert system can be refuted within a finite (respectively arbitrary) cardinality measure Kripke frame with a finite domain. We then transform this finite (respectively arbitrary) cardinality measure Kripke frame into a Kripke frame in the corresponding class, refuting the unprovable formula.
分享
查看原文
带计数的模态逻辑公理化
有计数的模态逻辑是在基本模态逻辑的基础上增加了形式为 $ \#\varphi \succsim \#\psi $ 的万有性比较公式,说明满足 $ \varphi $ 的后继者的万有性大于或等于满足 $ \psi $ 的后继者的万有性。它不同于分级模态逻辑,在分级模态逻辑中,基本模态逻辑被扩展为$ \Diamond _{k}\varphi $形式的公式,即至少有$ k$个不同的后继者满足$ \varphi $。 在本文中,我们研究了ML(#)在不同框架类(如图像无限框架和任意框架)方面的公理化。从现有著作中汲取灵感,我们采用了类似的证明策略,利用有限布尔代数上二元关系的表征,能够表示广义概率度量或有限(分别为任意)万有度量。我们的主要结果表明,任何在希尔伯特系统中无法证明的公式,都可以在具有有限域的有限(分别为任意)万有度量克里普克框架中被反驳。然后,我们将这个有限(分别为任意)心度量克里普克框架转化为相应类中的克里普克框架,驳斥不可证公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信