{"title":"Social-STGMLP: A Social Spatio-Temporal Graph Multi-Layer Perceptron for Pedestrian Trajectory Prediction","authors":"Dexu Meng, Guangzhe Zhao, Feihu Yan","doi":"10.3390/info15060341","DOIUrl":null,"url":null,"abstract":"As autonomous driving technology advances, the imperative of ensuring pedestrian traffic safety becomes increasingly prominent within the design framework of autonomous driving systems. Pedestrian trajectory prediction stands out as a pivotal technology aiming to address this challenge by striving to precisely forecast pedestrians’ future trajectories, thereby enabling autonomous driving systems to execute timely and accurate decisions. However, the prevailing state-of-the-art models often rely on intricate structures and a substantial number of parameters, posing challenges in meeting the imperative demand for lightweight models within autonomous driving systems. To address these challenges, we introduce Social Spatio-Temporal Graph Multi-Layer Perceptron (Social-STGMLP), a novel approach that utilizes solely fully connected layers and layer normalization. Social-STGMLP operates by abstracting pedestrian trajectories into a spatio-temporal graph, facilitating the modeling of both the spatial social interaction among pedestrians and the temporal motion tendency inherent to pedestrians themselves. Our evaluation of Social-STGMLP reveals its superiority over the reference method, as evidenced by experimental results indicating reductions of 5% in average displacement error (ADE) and 17% in final displacement error (FDE).","PeriodicalId":510156,"journal":{"name":"Information","volume":"112 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15060341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As autonomous driving technology advances, the imperative of ensuring pedestrian traffic safety becomes increasingly prominent within the design framework of autonomous driving systems. Pedestrian trajectory prediction stands out as a pivotal technology aiming to address this challenge by striving to precisely forecast pedestrians’ future trajectories, thereby enabling autonomous driving systems to execute timely and accurate decisions. However, the prevailing state-of-the-art models often rely on intricate structures and a substantial number of parameters, posing challenges in meeting the imperative demand for lightweight models within autonomous driving systems. To address these challenges, we introduce Social Spatio-Temporal Graph Multi-Layer Perceptron (Social-STGMLP), a novel approach that utilizes solely fully connected layers and layer normalization. Social-STGMLP operates by abstracting pedestrian trajectories into a spatio-temporal graph, facilitating the modeling of both the spatial social interaction among pedestrians and the temporal motion tendency inherent to pedestrians themselves. Our evaluation of Social-STGMLP reveals its superiority over the reference method, as evidenced by experimental results indicating reductions of 5% in average displacement error (ADE) and 17% in final displacement error (FDE).