Vladimir Mikryukov, Kessy Abarenkov, Thomas Jeppesen, Dmitry Schigel, Tobias Frøslev
{"title":"Prototype Biodiversity Digital Twin: Phylogenetic Diversity","authors":"Vladimir Mikryukov, Kessy Abarenkov, Thomas Jeppesen, Dmitry Schigel, Tobias Frøslev","doi":"10.3897/rio.10.e124988","DOIUrl":null,"url":null,"abstract":"Phylogenetic diversity (PD) represents a fundamental measure of biodiversity, encapsulating the extent of evolutionary history within species groups. This measure, pivotal for understanding biodiversity's full dimension, has gained recognition by major environmental and scientific organisations, including the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Unlike traditional taxonomic richness, PD offers a comprehensive, evolutionary perspective on biodiversity, essential for conservation planning and biodiversity management. This manuscript describes the development of a BioDT (Biodiversity Digital Twin) prototype, aimed at facilitating the calculation and visualisation of biodiversity metrics from global, dynamic data sources. By utilising the PhyloNext pipeline and integrating with global phylogenetic and species occurrence databases like the Open Tree of Life (OToL) and the Global Biodiversity Information Facility (GBIF), the prototype aims to significantly reduce computation time and enhance user interaction. This enables dynamic visualisation and potentially hypothesis testing, making it a valuable tool for researchers, monitoring initiatives, policy-makers and the public. The prototype's development focuses on improving the PhyloNext pipeline's scalability and creating a more intuitive user interface, expanding its utility for conservation efforts and biodiversity exploration. Our work illustrates the potential impact of the BioDT prototype in supporting diverse user groups in visualising and exploring PD, thus contributing to more informed decision-making in conservation and biodiversity management.","PeriodicalId":92718,"journal":{"name":"Research ideas and outcomes","volume":"125 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research ideas and outcomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/rio.10.e124988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phylogenetic diversity (PD) represents a fundamental measure of biodiversity, encapsulating the extent of evolutionary history within species groups. This measure, pivotal for understanding biodiversity's full dimension, has gained recognition by major environmental and scientific organisations, including the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Unlike traditional taxonomic richness, PD offers a comprehensive, evolutionary perspective on biodiversity, essential for conservation planning and biodiversity management. This manuscript describes the development of a BioDT (Biodiversity Digital Twin) prototype, aimed at facilitating the calculation and visualisation of biodiversity metrics from global, dynamic data sources. By utilising the PhyloNext pipeline and integrating with global phylogenetic and species occurrence databases like the Open Tree of Life (OToL) and the Global Biodiversity Information Facility (GBIF), the prototype aims to significantly reduce computation time and enhance user interaction. This enables dynamic visualisation and potentially hypothesis testing, making it a valuable tool for researchers, monitoring initiatives, policy-makers and the public. The prototype's development focuses on improving the PhyloNext pipeline's scalability and creating a more intuitive user interface, expanding its utility for conservation efforts and biodiversity exploration. Our work illustrates the potential impact of the BioDT prototype in supporting diverse user groups in visualising and exploring PD, thus contributing to more informed decision-making in conservation and biodiversity management.