Model parameter estimation with imprecise information

Wolfgang Rauch, Nikolaus Rauch, M. Kleidorfer
{"title":"Model parameter estimation with imprecise information","authors":"Wolfgang Rauch, Nikolaus Rauch, M. Kleidorfer","doi":"10.2166/wst.2024.197","DOIUrl":null,"url":null,"abstract":"\n \n Model parameter estimation is a well-known inverse problem, as long as single-value point data are available as observations of system performance measurement. However, classical statistical methods, such as the minimization of an objective function or maximum likelihood, are no longer straightforward, when measurements are imprecise in nature. Typical examples of the latter include censored data and binary information. Here, we explore Approximate Bayesian Computation as a simple method to perform model parameter estimation with such imprecise information. We demonstrate the method for the example of a plain rainfall–runoff model and illustrate the advantages and shortcomings. Last, we outline the value of Shapley values to determine which type of observation contributes to the parameter estimation and which are of minor importance.","PeriodicalId":298320,"journal":{"name":"Water Science & Technology","volume":"58 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wst.2024.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Model parameter estimation is a well-known inverse problem, as long as single-value point data are available as observations of system performance measurement. However, classical statistical methods, such as the minimization of an objective function or maximum likelihood, are no longer straightforward, when measurements are imprecise in nature. Typical examples of the latter include censored data and binary information. Here, we explore Approximate Bayesian Computation as a simple method to perform model parameter estimation with such imprecise information. We demonstrate the method for the example of a plain rainfall–runoff model and illustrate the advantages and shortcomings. Last, we outline the value of Shapley values to determine which type of observation contributes to the parameter estimation and which are of minor importance.
利用不精确信息进行模型参数估计
只要有单值点数据作为系统性能测量的观测数据,模型参数估计就是一个众所周知的逆问题。然而,当测量结果不精确时,传统的统计方法(如目标函数最小化或最大似然法)就不再简单。后者的典型例子包括删减数据和二进制信息。在这里,我们将探讨近似贝叶斯计算,作为一种简单的方法,利用此类不精确信息进行模型参数估计。我们以普通降雨-径流模型为例演示了该方法,并说明了其优点和缺点。最后,我们概述了沙普利值的价值,以确定哪类观测结果有助于参数估计,哪类观测结果不重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信