{"title":"A Two-Stage Analysis of Interaction Between Stock and Exchange Rate Markets: Evidence from Turkey","authors":"Muhammad Ali Faisal, Murat Donduran","doi":"10.1007/s40745-024-00547-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we use a novel approach to explore possible connections between foreign exchange and stock returns using Turkish financial data from 2005 to 2022. Our method involves a two-stage technique. The first stage begins by decomposing individual time series signals into separate intrinsic mode functions (IMFs) with a complete ensemble empirical mode decomposition with added noise algorithm. Extracted IMFs are then used to construct high and low-frequency components through a fine-to-coarse algorithm. In the second phase, we utilized a cross-quantilogram technique to analyze the dependence in quantiles of the original return series along with frequency components obtained in the previous stage. Results revealed several important insights. Firstly, a relatively higher effect ran from stock returns to exchange rate returns for the pertinent period. Secondly, tail dependence is apparent, as returns are discernibly linked. Thirdly, the tail dependence in the returns is more profound in the high-frequency composition than in the low-frequency component. Lastly, the structure of dependence has stayed mostly constant throughout the sample period analyzed.</p></div>","PeriodicalId":36280,"journal":{"name":"Annals of Data Science","volume":"12 1","pages":"171 - 198"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Data Science","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s40745-024-00547-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we use a novel approach to explore possible connections between foreign exchange and stock returns using Turkish financial data from 2005 to 2022. Our method involves a two-stage technique. The first stage begins by decomposing individual time series signals into separate intrinsic mode functions (IMFs) with a complete ensemble empirical mode decomposition with added noise algorithm. Extracted IMFs are then used to construct high and low-frequency components through a fine-to-coarse algorithm. In the second phase, we utilized a cross-quantilogram technique to analyze the dependence in quantiles of the original return series along with frequency components obtained in the previous stage. Results revealed several important insights. Firstly, a relatively higher effect ran from stock returns to exchange rate returns for the pertinent period. Secondly, tail dependence is apparent, as returns are discernibly linked. Thirdly, the tail dependence in the returns is more profound in the high-frequency composition than in the low-frequency component. Lastly, the structure of dependence has stayed mostly constant throughout the sample period analyzed.
期刊介绍:
Annals of Data Science (ADS) publishes cutting-edge research findings, experimental results and case studies of data science. Although Data Science is regarded as an interdisciplinary field of using mathematics, statistics, databases, data mining, high-performance computing, knowledge management and virtualization to discover knowledge from Big Data, it should have its own scientific contents, such as axioms, laws and rules, which are fundamentally important for experts in different fields to explore their own interests from Big Data. ADS encourages contributors to address such challenging problems at this exchange platform. At present, how to discover knowledge from heterogeneous data under Big Data environment needs to be addressed. ADS is a series of volumes edited by either the editorial office or guest editors. Guest editors will be responsible for call-for-papers and the review process for high-quality contributions in their volumes.