Comparative Analysis of Dark Energy Compact Stars in $f(T,\mathcal{T})$ and $f(T)$ Gravity Theories via Conformally Flat Condition

A. Ditta, G. Mustafa, S. Maurya, D. Sofuoğlu, Asif Mahmood
{"title":"Comparative Analysis of Dark Energy Compact Stars in $f(T,\\mathcal{T})$ and $f(T)$ Gravity Theories via Conformally Flat Condition","authors":"A. Ditta, G. Mustafa, S. Maurya, D. Sofuoğlu, Asif Mahmood","doi":"10.1088/1361-6382/ad56f0","DOIUrl":null,"url":null,"abstract":"\n This manuscript is the first investigation of dark energy celestial phenomena in the modified gravity theory by examining dark energy compact stars within the context of modified $f(T,\\mathcal{T})$ gravity. In order to compare the outcomes of the $f(T,\\mathcal{T})$ and $f(T)$ gravity theories, the model $f(T,\\mathcal{T})=\\alpha T(r)+\\beta \\mathcal{T}(r)+\\phi$ is selected. This model is then simplified to $f(T)$ gravity by setting $\\beta=0$. The $f(T)$ gravity is torsion-based gravity, while in $f(T,\\mathcal{T}$) gravity trace of energy-momentum tensor is coupled with torsion. Moreover, we note that we have more dense object formation in $f(T,\\mathcal{T})$ gravity as compared to $f(T$)-gravity. The spherically symmetric space-time inside the internal geometry is analyzed using a conformally flat condition, while the Schwarzschild geometry represents the outer space-time. Numerous characteristics of dark energy stars are examined, including equation of state components, energy conditions, and dark energy pressure components. Empirical evidence for the existence of dark energy in stellar configurations is presented by the results for pressure components in dark energy, which show a significant negative tendency in these stellar parameters. A complete analysis is performed by thoroughly investigating energy conditions, pressure profiles, sound speeds, gradients, adiabatic index, TOV equation, mass function, compactness, and redshift function. The mass-radius relation is also discussed via $M-R$ curves. This confirms that the studied star configuration is realistic and acceptable.","PeriodicalId":505126,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad56f0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript is the first investigation of dark energy celestial phenomena in the modified gravity theory by examining dark energy compact stars within the context of modified $f(T,\mathcal{T})$ gravity. In order to compare the outcomes of the $f(T,\mathcal{T})$ and $f(T)$ gravity theories, the model $f(T,\mathcal{T})=\alpha T(r)+\beta \mathcal{T}(r)+\phi$ is selected. This model is then simplified to $f(T)$ gravity by setting $\beta=0$. The $f(T)$ gravity is torsion-based gravity, while in $f(T,\mathcal{T}$) gravity trace of energy-momentum tensor is coupled with torsion. Moreover, we note that we have more dense object formation in $f(T,\mathcal{T})$ gravity as compared to $f(T$)-gravity. The spherically symmetric space-time inside the internal geometry is analyzed using a conformally flat condition, while the Schwarzschild geometry represents the outer space-time. Numerous characteristics of dark energy stars are examined, including equation of state components, energy conditions, and dark energy pressure components. Empirical evidence for the existence of dark energy in stellar configurations is presented by the results for pressure components in dark energy, which show a significant negative tendency in these stellar parameters. A complete analysis is performed by thoroughly investigating energy conditions, pressure profiles, sound speeds, gradients, adiabatic index, TOV equation, mass function, compactness, and redshift function. The mass-radius relation is also discussed via $M-R$ curves. This confirms that the studied star configuration is realistic and acceptable.
通过共形平坦条件对比分析 $f(T,\mathcal{T})$ 和 $f(T)$ 引力理论中的暗能量紧凑恒星
本手稿通过在修正的$f(T,\mathcal{T})$引力背景下研究暗能量紧凑星,首次研究了修正引力理论中的暗能量天体现象。为了比较$f(T,\mathcal{T})$和$f(T)$引力理论的结果,选择了$f(T,\mathcal{T})=\alpha T(r)+\beta \mathcal{T}(r)+\phi$模型。然后通过设置 $\beta=0$ 将该模型简化为 $f(T)$ 重力。$f(T)$引力是基于扭转的引力,而在$f(T,\mathcal{T}$中,能动张量的引力迹是与扭转耦合的。此外,我们注意到,与$f(T$)引力相比,在$f(T,\mathcal{T})$引力中会形成更密集的物体。我们使用保角平坦条件分析了内部几何内部的球对称时空,而施瓦兹柴尔德几何则代表了外部时空。研究了暗能量恒星的许多特征,包括状态方程成分、能量条件和暗能量压力成分。暗能量压力分量的结果表明,这些恒星参数呈显著的负趋势,这为恒星构型中暗能量的存在提供了经验证据。通过彻底研究能量条件、压力剖面、声速、梯度、绝热指数、TOV 方程、质量函数、紧密度和红移函数,进行了全面的分析。还通过 $M-R$ 曲线讨论了质量-半径关系。这证实了所研究的恒星构型是现实的、可接受的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信