Leveraging Open Large Language Models for Multilingual Policy Topic Classification: The Babel Machine Approach

Miklós Sebők, Ákos Máté, Orsolya Ring, Viktor Kovács, Richárd Lehoczki
{"title":"Leveraging Open Large Language Models for Multilingual Policy Topic Classification: The Babel Machine Approach","authors":"Miklós Sebők, Ákos Máté, Orsolya Ring, Viktor Kovács, Richárd Lehoczki","doi":"10.1177/08944393241259434","DOIUrl":null,"url":null,"abstract":"The article presents an open-source and freely available natural language processing system for comparative policy studies. The CAP Babel Machine allows for the automated classification of input files based on the 21 major policy topics of the codebook of the Comparative Agendas Project (CAP). By using multilingual XLM-RoBERTa large language models, the pipeline can produce state-of-the-art level outputs for selected pairs of languages and domains (such as media or parliamentary speech). For 24 cases out of 41, the weighted macro F1 of our language-domain models surpassed 0.75 (and, for 6 language-domain pairs, 0.90). Besides macro F1, for most major topic categories, the distribution of micro F1 scores is also centered around 0.75. These results show that the CAP Babel machine is a viable alternative for human coding in terms of validity at less cost and higher reliability. The proposed research design also has significant possibilities for scaling in terms of leveraging new models, covering new languages, and adding new datasets for fine-tuning. Based on our tests on manifesto data, a different policy classification scheme, we argue that model-pipeline frameworks such as the Babel Machine can, over time, potentially replace double-blind human coding for a multitude of comparative classification problems.","PeriodicalId":506768,"journal":{"name":"Social Science Computer Review","volume":"56 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Social Science Computer Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08944393241259434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents an open-source and freely available natural language processing system for comparative policy studies. The CAP Babel Machine allows for the automated classification of input files based on the 21 major policy topics of the codebook of the Comparative Agendas Project (CAP). By using multilingual XLM-RoBERTa large language models, the pipeline can produce state-of-the-art level outputs for selected pairs of languages and domains (such as media or parliamentary speech). For 24 cases out of 41, the weighted macro F1 of our language-domain models surpassed 0.75 (and, for 6 language-domain pairs, 0.90). Besides macro F1, for most major topic categories, the distribution of micro F1 scores is also centered around 0.75. These results show that the CAP Babel machine is a viable alternative for human coding in terms of validity at less cost and higher reliability. The proposed research design also has significant possibilities for scaling in terms of leveraging new models, covering new languages, and adding new datasets for fine-tuning. Based on our tests on manifesto data, a different policy classification scheme, we argue that model-pipeline frameworks such as the Babel Machine can, over time, potentially replace double-blind human coding for a multitude of comparative classification problems.
利用开放式大型语言模型进行多语言政策主题分类:巴别机方法
文章介绍了一种用于比较政策研究的开源、免费的自然语言处理系统。CAP 巴别机可以根据比较议程项目(CAP)代码库中的 21 个主要政策主题对输入文件进行自动分类。通过使用多语言 XLM-RoBERTa 大语言模型,该管道可以为选定的语言对和领域(如媒体或议会发言)生成最先进水平的输出。在 41 个案例中有 24 个案例中,我们的语域模型的加权宏 F1 超过了 0.75(6 个语域对的加权宏 F1 超过了 0.90)。除了宏观 F1,对于大多数主要的主题类别,微观 F1 分数的分布也以 0.75 为中心。这些结果表明,就有效性而言,CAP 巴别机可替代人工编码,成本更低,可靠性更高。所提出的研究设计在利用新模型、覆盖新语言和添加新数据集进行微调方面也有很大的扩展空间。基于我们对宣言数据(一种不同的政策分类方案)的测试,我们认为,随着时间的推移,巴别机等模型管道框架有可能在众多比较分类问题上取代双盲人工编码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信