Neural Network Sales Revolution Outperforms Exponential Smoothing

Safia Meilia Sari, Indah Apriliana Sari Wulandari
{"title":"Neural Network Sales Revolution Outperforms Exponential Smoothing","authors":"Safia Meilia Sari, Indah Apriliana Sari Wulandari","doi":"10.21070/ijins.v25i3.1178","DOIUrl":null,"url":null,"abstract":"This research addresses the challenges faced by food manufacturing companies, focusing on UD. XYZ as a case study. With fluctuating sales levels causing raw material buildup and shortages, the study proposes an improved sales forecasting method to enhance raw material control. By comparing Artificial Neural Network (ANN) and Double Exponential Smoothing Holts, the research aims to optimize inventory management and production processes. Results indicate ANN's superiority over Holts, with an accuracy rate of 0.118 compared to 11.639. The ANN model accurately forecasts sales for the upcoming twelve-month period, highlighting a decline from July 2023 to May 2024. Implementing advanced forecasting methods can mitigate raw material-related risks and enhance operational efficiency for companies like UD. XYZ. \nHighlight: \n  \n \nEnhanced sales prediction methods crucial for inventory planning. \nArtificial Neural Network outperforms traditional forecasting techniques. \nImproved forecasting mitigates raw material shortages and excesses. \n \n  \nKeywoard: Sales forecasting, Artificial Neural Network, Raw material control, Inventory management, Production optimization.","PeriodicalId":431998,"journal":{"name":"Indonesian Journal of Innovation Studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Innovation Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21070/ijins.v25i3.1178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research addresses the challenges faced by food manufacturing companies, focusing on UD. XYZ as a case study. With fluctuating sales levels causing raw material buildup and shortages, the study proposes an improved sales forecasting method to enhance raw material control. By comparing Artificial Neural Network (ANN) and Double Exponential Smoothing Holts, the research aims to optimize inventory management and production processes. Results indicate ANN's superiority over Holts, with an accuracy rate of 0.118 compared to 11.639. The ANN model accurately forecasts sales for the upcoming twelve-month period, highlighting a decline from July 2023 to May 2024. Implementing advanced forecasting methods can mitigate raw material-related risks and enhance operational efficiency for companies like UD. XYZ. Highlight:   Enhanced sales prediction methods crucial for inventory planning. Artificial Neural Network outperforms traditional forecasting techniques. Improved forecasting mitigates raw material shortages and excesses.   Keywoard: Sales forecasting, Artificial Neural Network, Raw material control, Inventory management, Production optimization.
神经网络销售革命优于指数平滑法
本研究以 UD.XYZ 作为案例进行研究。随着销售水平的波动导致原材料堆积和短缺,本研究提出了一种改进的销售预测方法,以加强原材料控制。通过比较人工神经网络(ANN)和双指数平滑霍尔茨(Double Exponential Smoothing Holts),该研究旨在优化库存管理和生产流程。结果表明,ANN 的准确率为 0.118,而 Holts 的准确率为 11.639,ANN 优于 Holts。ANN 模型准确预测了未来 12 个月的销售情况,突出显示了从 2023 年 7 月到 2024 年 5 月期间的下降。对于 UD.XYZ 这样的公司来说,采用先进的预测方法可以降低原材料相关风险,提高运营效率。XYZ。亮点: 增强型销售预测方法对库存规划至关重要。人工神经网络优于传统预测技术。改进预测可减少原材料短缺和过剩。 关键字销售预测、人工神经网络、原材料控制、库存管理、生产优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信