Tilted perpendicular anisotropy-induced spin-orbit ratchet effects

IF 3.5 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Bin Chen, Yuantu Long, Yulin Nie, Ziyu Ling, Tianping Ma, Ruixuan Zhang, Yizheng Wu, Yongming Luo, Ningning Wang
{"title":"Tilted perpendicular anisotropy-induced spin-orbit ratchet effects","authors":"Bin Chen, Yuantu Long, Yulin Nie, Ziyu Ling, Tianping Ma, Ruixuan Zhang, Yizheng Wu, Yongming Luo, Ningning Wang","doi":"10.1088/0256-307x/41/7/078501","DOIUrl":null,"url":null,"abstract":"\n Using micromagnetic simulations, in this study we demonstrate the tilted perpendicular anisotropy -induced spin-orbit ratchet effect. During spin-orbit torque (SOT)-induced magnetization switching, the critical currents required to switch between the two magnetization states (upward and downward magnetization) are asymmetric. In addition, in the nanowire structure, tilted anisotropy induces formation of tilted domain walls (DWs). The tilted DWs exhibit a ratchet behavior during motion. The ratchet effect during switching and DW motions can be tuned by changing the current direction with respect to the tilting direction of anisotropy. The ratchet motion of the DWs can be used to mimic the Leaky–Integrate–Fire function of a biological neuron, especially the asymmetric property of the “potential” and “reset” processes. Our results provide a full understanding of the influence of tilted perpendicular anisotropy on SOT-induced magnetization switching and DW motion, and are beneficial for design of further SOT-based devices.","PeriodicalId":10344,"journal":{"name":"Chinese Physics Letters","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/0256-307x/41/7/078501","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using micromagnetic simulations, in this study we demonstrate the tilted perpendicular anisotropy -induced spin-orbit ratchet effect. During spin-orbit torque (SOT)-induced magnetization switching, the critical currents required to switch between the two magnetization states (upward and downward magnetization) are asymmetric. In addition, in the nanowire structure, tilted anisotropy induces formation of tilted domain walls (DWs). The tilted DWs exhibit a ratchet behavior during motion. The ratchet effect during switching and DW motions can be tuned by changing the current direction with respect to the tilting direction of anisotropy. The ratchet motion of the DWs can be used to mimic the Leaky–Integrate–Fire function of a biological neuron, especially the asymmetric property of the “potential” and “reset” processes. Our results provide a full understanding of the influence of tilted perpendicular anisotropy on SOT-induced magnetization switching and DW motion, and are beneficial for design of further SOT-based devices.
倾斜垂直各向异性诱导的自旋轨道棘轮效应
在这项研究中,我们利用微磁模拟证明了倾斜垂直各向异性诱导的自旋轨道棘轮效应。在自旋轨道力矩(SOT)诱导的磁化切换过程中,在两种磁化状态(向上磁化和向下磁化)之间切换所需的临界电流是不对称的。此外,在纳米线结构中,倾斜各向异性诱导形成倾斜畴壁(DW)。倾斜畴壁在运动过程中表现出棘轮效应。通过改变相对于各向异性倾斜方向的电流方向,可以调整开关和 DW 运动过程中的棘轮效应。DW 的棘轮运动可用于模拟生物神经元的 "漏-并-火 "功能,尤其是 "电位 "和 "复位 "过程的不对称特性。我们的研究结果让人们充分了解了倾斜的垂直各向异性对 SOT 诱导的磁化切换和 DW 运动的影响,有利于设计更多基于 SOT 的器件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Physics Letters
Chinese Physics Letters 物理-物理:综合
CiteScore
5.90
自引率
8.60%
发文量
13238
审稿时长
4 months
期刊介绍: Chinese Physics Letters provides rapid publication of short reports and important research in all fields of physics and is published by the Chinese Physical Society and hosted online by IOP Publishing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信