On the motion of a spherical cavity in a melt

M. N. Vereshchagin, Yu. D. Chernichenko, S. V. Shishkov
{"title":"On the motion of a spherical cavity in a melt","authors":"M. N. Vereshchagin, Yu. D. Chernichenko, S. V. Shishkov","doi":"10.21122/1683-6065-2024-2-141-145","DOIUrl":null,"url":null,"abstract":"Gas inclusions significantly influence the quality of solidifying melts. Dissolved gases in liquid metals, due to diffusion and chemical reactions, contribute to the formation and growth of new inclusions. The mathematical problem of the dynamic behavior of a spherical cavity is solved using the Navier‑Stokes equation, treating the melt as a viscous incompressible fluid. An expression for the change in radius of a spherical cavity under Newtonian behavior of the melts is obtained.","PeriodicalId":278844,"journal":{"name":"Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY)","volume":"18 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Litiyo i Metallurgiya (FOUNDRY PRODUCTION AND METALLURGY)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21122/1683-6065-2024-2-141-145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Gas inclusions significantly influence the quality of solidifying melts. Dissolved gases in liquid metals, due to diffusion and chemical reactions, contribute to the formation and growth of new inclusions. The mathematical problem of the dynamic behavior of a spherical cavity is solved using the Navier‑Stokes equation, treating the melt as a viscous incompressible fluid. An expression for the change in radius of a spherical cavity under Newtonian behavior of the melts is obtained.
关于熔体中球形空腔的运动
气体夹杂物会严重影响凝固熔体的质量。由于扩散和化学反应,液态金属中的溶解气体有助于新夹杂物的形成和生长。球形空腔动态行为的数学问题采用纳维-斯托克斯方程求解,将熔体视为粘性不可压缩流体。得出了在熔体的牛顿行为下球形空腔半径变化的表达式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信