Mn2+–Mn2+ Dimers Induced Robust Light Absorption in Heavy Mn2+ Doped ZnAl2O4 Near-Infrared Phosphor with an Excellent Photoluminescence Quantum Yield and Thermal Stability

IF 8 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Chenyang Zhan, Haomiao Zhu, Sisi Liang, Wendong Nie, Zihao Wang, Maochun Hong
{"title":"Mn2+–Mn2+ Dimers Induced Robust Light Absorption in Heavy Mn2+ Doped ZnAl2O4 Near-Infrared Phosphor with an Excellent Photoluminescence Quantum Yield and Thermal Stability","authors":"Chenyang Zhan,&nbsp;Haomiao Zhu,&nbsp;Sisi Liang,&nbsp;Wendong Nie,&nbsp;Zihao Wang,&nbsp;Maochun Hong","doi":"10.1002/adom.202400574","DOIUrl":null,"url":null,"abstract":"<p>Transition metal ions, such as Cr<sup>3+</sup>, Fe<sup>3+</sup>, and Ni<sup>2+</sup>, are widely recognized activators for efficient broadband near-infrared (NIR) phosphors. However, the potential of Mn<sup>2+</sup> ions as NIR-emitting activators is relatively overlooked due to their typically narrowband emission in the visible spectral region and relatively weak absorption. Herein, a heavy Mn<sup>2+</sup>-doped Zn<sub>1-x</sub>Al<sub>2</sub>O<sub>4</sub>: xMn<sup>2+</sup> (ZAO: xMn<sup>2+</sup>) phosphor is presented that exhibits a single NIR emission band peaked at 830 nm with a bandwidth of 135 nm under excitation at 450 nm. Through comprehensive structural and spectral analysis, this NIR band is attributed to the emission originating from Mn<sup>2+</sup> ions within the MnO<sub>6</sub> octahedra. Importantly, the formation of Mn<sup>2+</sup>–Mn<sup>2+</sup> dimers breaks the spin-forbidden rule and significantly enhances the transition probability, as supported by the excited state dynamic analysis. Consequently, the optimal ZAO: 0.70Mn<sup>2+</sup> sample shows high internal/external photoluminescence quantum yields of 85.8%/36.9%, along with good thermal stability demonstrated by the emission intensity at 423 K retains 60% of that at 298 K. Finally, a prototype NIR pc-LED device is fabricated by combining ZAO: 0.70Mn<sup>2+</sup> phosphor with a 450 nm blue diode chip, generating an NIR output power of 28.84 mW at 100 mA. This study provides novel insights into high-performance Mn<sup>2+</sup>-activated NIR phosphors.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adom.202400574","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Transition metal ions, such as Cr3+, Fe3+, and Ni2+, are widely recognized activators for efficient broadband near-infrared (NIR) phosphors. However, the potential of Mn2+ ions as NIR-emitting activators is relatively overlooked due to their typically narrowband emission in the visible spectral region and relatively weak absorption. Herein, a heavy Mn2+-doped Zn1-xAl2O4: xMn2+ (ZAO: xMn2+) phosphor is presented that exhibits a single NIR emission band peaked at 830 nm with a bandwidth of 135 nm under excitation at 450 nm. Through comprehensive structural and spectral analysis, this NIR band is attributed to the emission originating from Mn2+ ions within the MnO6 octahedra. Importantly, the formation of Mn2+–Mn2+ dimers breaks the spin-forbidden rule and significantly enhances the transition probability, as supported by the excited state dynamic analysis. Consequently, the optimal ZAO: 0.70Mn2+ sample shows high internal/external photoluminescence quantum yields of 85.8%/36.9%, along with good thermal stability demonstrated by the emission intensity at 423 K retains 60% of that at 298 K. Finally, a prototype NIR pc-LED device is fabricated by combining ZAO: 0.70Mn2+ phosphor with a 450 nm blue diode chip, generating an NIR output power of 28.84 mW at 100 mA. This study provides novel insights into high-performance Mn2+-activated NIR phosphors.

Abstract Image

掺杂重 Mn2+ 的 ZnAl2O4 近红外荧光粉中 Mn2+-Mn2+ 二聚体诱导的强光吸收具有优异的光致发光量子产率和热稳定性
过渡金属离子,如 Cr3+、Fe3+ 和 Ni2+,是公认的高效宽带近红外(NIR)荧光粉活化剂。然而,由于 Mn2+ 离子通常在可见光谱区窄带发射且吸收相对较弱,因此其作为近红外发射活化剂的潜力相对被忽视。本文介绍了一种重 Mn2+掺杂的 Zn1-xAl2O4: xMn2+(ZAO: xMn2+)荧光粉,在 450 纳米波长的激发下,该荧光粉在 830 纳米波长处显示出单个近红外发射带峰值,带宽为 135 纳米波长。通过全面的结构和光谱分析,该近红外波段的发射源于 MnO6 八面体中的 Mn2+ 离子。重要的是,Mn2+-Mn2+ 二聚体的形成打破了自旋禁止规则,显著提高了跃迁概率,激发态动态分析也证明了这一点。因此,最佳的ZAO: 0.70Mn2+ 样品显示出 85.8%/36.9% 的高内部/外部光致发光量子产率,以及良好的热稳定性,在 423 K 时的发射强度保持在 298 K 时的 60%。最后,通过将ZAO: 0.70Mn2+ 荧光粉与 450 nm 的蓝色二极管芯片相结合,制造出了一个近红外 pc-LED 器件原型,在 100 mA 时产生 28.84 mW 的近红外输出功率。这项研究为高性能 Mn2+激活的近红外荧光粉提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信