Numerical Analysis of a Second-Order Algorithm for the Time-Dependent Natural Convection Problem

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Yiru Chen, Yun‐Bo Yang
{"title":"Numerical Analysis of a Second-Order Algorithm for the Time-Dependent Natural Convection Problem","authors":"Yiru Chen, Yun‐Bo Yang","doi":"10.1515/cmam-2023-0225","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, a second-order algorithm based on the spectral deferred correction method is constructed for the time-dependent natural convection problem, which allows one to automatically increase the accuracy of a first-order backward-Euler time-stepping method through using spectral integration on Gaussian quadrature nodes and constructing the corrections. A complete theoretical analysis is presented to prove that this algorithm is unconditionally stable and possesses second-order accuracy in time. Numerical examples are given to confirm the theoretical analysis and the effectiveness of our algorithm.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0225","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, a second-order algorithm based on the spectral deferred correction method is constructed for the time-dependent natural convection problem, which allows one to automatically increase the accuracy of a first-order backward-Euler time-stepping method through using spectral integration on Gaussian quadrature nodes and constructing the corrections. A complete theoretical analysis is presented to prove that this algorithm is unconditionally stable and possesses second-order accuracy in time. Numerical examples are given to confirm the theoretical analysis and the effectiveness of our algorithm.
时变自然对流问题二阶算法的数值分析
摘要 本文针对时变自然对流问题,构建了一种基于谱延迟修正法的二阶算法,通过在高斯正交节点上使用谱积分并构建修正,可以自动提高一阶后退-欧拉时步法的精度。通过完整的理论分析,证明该算法是无条件稳定的,并且在时间上具有二阶精度。还给出了数值示例来证实理论分析和算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信