General Adaptable Design and Evaluation Using Markov Processes

IF 2.9 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Zhilin Sun, Kaifeng Wang, Peihua Gu
{"title":"General Adaptable Design and Evaluation Using Markov Processes","authors":"Zhilin Sun, Kaifeng Wang, Peihua Gu","doi":"10.1115/1.4065723","DOIUrl":null,"url":null,"abstract":"\n Facing the challenges posed by increasingly complex, dynamic, and unpredictable requirements, the design process is grappling with the critical issue of ensuring sustained product satisfaction amid changing demands. This paper introduces an approach for evaluating design adaptability, considering potential future requirements. Entropy serves as a crucial indicator to quantify design effort and the Markov process is employed to simulate potential requirement changes. The information contents of design requirements and design solutions are defined based on information entropy theory, and the design adaptability of a design candidate is evaluated by calculating the extra design effort for satisfying the design requirements, which is the difference in information content between the design candidate and design requirements. Moreover, a simulation method for requirement evolution is proposed, which integrates information entropy theory and the Markov process to accommodate potential future requirements. The general design adaptability of design solutions is then calculated based on conditional entropy, taking into account the evolving design requirements. Finally, the effectiveness of the proposed approach is validated through a case study involving the design and evaluation of a hybrid additive manufacturing (HAM) device.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4065723","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Facing the challenges posed by increasingly complex, dynamic, and unpredictable requirements, the design process is grappling with the critical issue of ensuring sustained product satisfaction amid changing demands. This paper introduces an approach for evaluating design adaptability, considering potential future requirements. Entropy serves as a crucial indicator to quantify design effort and the Markov process is employed to simulate potential requirement changes. The information contents of design requirements and design solutions are defined based on information entropy theory, and the design adaptability of a design candidate is evaluated by calculating the extra design effort for satisfying the design requirements, which is the difference in information content between the design candidate and design requirements. Moreover, a simulation method for requirement evolution is proposed, which integrates information entropy theory and the Markov process to accommodate potential future requirements. The general design adaptability of design solutions is then calculated based on conditional entropy, taking into account the evolving design requirements. Finally, the effectiveness of the proposed approach is validated through a case study involving the design and evaluation of a hybrid additive manufacturing (HAM) device.
利用马尔可夫过程进行通用适应性设计和评估
面对日益复杂、动态和不可预测的需求所带来的挑战,设计过程正在努力解决在不断变化的需求中确保持续的产品满意度这一关键问题。本文介绍了一种考虑未来潜在需求的设计适应性评估方法。熵是量化设计工作的关键指标,马尔可夫过程被用来模拟潜在的需求变化。本文基于信息熵理论定义了设计要求和设计方案的信息含量,并通过计算满足设计要求所需的额外设计工作量(即候选设计与设计要求之间的信息含量差)来评估候选设计的设计适应性。此外,还提出了一种需求演化的模拟方法,该方法综合了信息熵理论和马尔可夫过程,以适应未来潜在的需求。然后,根据条件熵计算出设计方案的一般设计适应性,并将不断变化的设计要求考虑在内。最后,通过一个涉及混合增材制造(HAM)设备设计和评估的案例研究,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mechanical Design
Journal of Mechanical Design 工程技术-工程:机械
CiteScore
8.00
自引率
18.20%
发文量
139
审稿时长
3.9 months
期刊介绍: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials. Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信