Simultaneous Determination of Multi-Class Mushroom Toxins in Mushroom and Biological Liquid Samples Using LC-MS/MS

IF 2.5 4区 工程技术 Q3 CHEMISTRY, ANALYTICAL
Junjia Lu, Jing Zhang, Haijiao Li, Chengye Sun
{"title":"Simultaneous Determination of Multi-Class Mushroom Toxins in Mushroom and Biological Liquid Samples Using LC-MS/MS","authors":"Junjia Lu, Jing Zhang, Haijiao Li, Chengye Sun","doi":"10.3390/separations11060183","DOIUrl":null,"url":null,"abstract":"A comprehensive analytical method based on liquid chromatography–tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous detection of 12 mushroom toxins (ibotenic acid, muscimol, muscarine, β-amanitin, α-amanitin, desoxoviroidin, γ-amanitin, phallisacin, illudin S, phallacidin, phalloidin and illudin M) in mushrooms, serum, urine and simulated gastric fluid. The samples were extracted with water or acetonitrile solution, and the serum sample was further purified with PSA sorbent. Chromatographic separation was performed on an ACQUITY UPLC HSS T3 column with gradient elution using methanol and water containing 1 mM ammonia fluoride as a mobile phase. Mass spectrometric acquisition was performed in electrospray positive ionization mode. Good linearities (R2 > 0.994) were obtained for 12 toxins over the range of 0.05~200 µg/L. Matrix-matched calibration curves were used for quantification. The method limits of quantification were 0.01~0.2 mg/kg for mushrooms and 0.15~2.0 µg/L for three biological liquid samples. The mean recoveries of 12 target toxins (spiked at three concentration levels) ranged from 73.0% to 110.3%, with relative standard deviations not exceeding 19.4%, which meets the requirements for the determination of trace compounds in a biological matrix. This method was applied to the analysis of mushroom samples from Yunnan Province. As a result, 11 toxins, not including illudin M, were detected with a concentration range of 0.61~2143 mg/kg.","PeriodicalId":21833,"journal":{"name":"Separations","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/separations11060183","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A comprehensive analytical method based on liquid chromatography–tandem mass spectrometry (LC-MS/MS) was developed for the simultaneous detection of 12 mushroom toxins (ibotenic acid, muscimol, muscarine, β-amanitin, α-amanitin, desoxoviroidin, γ-amanitin, phallisacin, illudin S, phallacidin, phalloidin and illudin M) in mushrooms, serum, urine and simulated gastric fluid. The samples were extracted with water or acetonitrile solution, and the serum sample was further purified with PSA sorbent. Chromatographic separation was performed on an ACQUITY UPLC HSS T3 column with gradient elution using methanol and water containing 1 mM ammonia fluoride as a mobile phase. Mass spectrometric acquisition was performed in electrospray positive ionization mode. Good linearities (R2 > 0.994) were obtained for 12 toxins over the range of 0.05~200 µg/L. Matrix-matched calibration curves were used for quantification. The method limits of quantification were 0.01~0.2 mg/kg for mushrooms and 0.15~2.0 µg/L for three biological liquid samples. The mean recoveries of 12 target toxins (spiked at three concentration levels) ranged from 73.0% to 110.3%, with relative standard deviations not exceeding 19.4%, which meets the requirements for the determination of trace compounds in a biological matrix. This method was applied to the analysis of mushroom samples from Yunnan Province. As a result, 11 toxins, not including illudin M, were detected with a concentration range of 0.61~2143 mg/kg.
利用 LC-MS/MS 同时测定蘑菇和生物液体样品中的多类蘑菇毒素
建立了一种液相色谱-串联质谱同时检测蘑菇、血清、尿液和模拟胃液中12种蘑菇毒素(布酸、麝香草酚、麝香草碱、β-拟蘑菇毒素、α-拟蘑菇毒素、去氧拟蘑菇毒素、γ-拟蘑菇毒素、噬菌体素、illudin S、噬菌体素、噬菌体素和illudin M)的综合分析方法。样品用水或乙腈溶液提取,血清样品用 PSA 吸附剂进一步净化。色谱分离采用 ACQUITY UPLC HSS T3 色谱柱,以甲醇和含 1 mM 氟化氨的水为流动相进行梯度洗脱。质谱采集采用电喷雾正离子模式。12 种毒素在 0.05 至 200 µg/L 范围内线性良好(R2 > 0.994)。采用基质匹配校准曲线进行定量。蘑菇和三种生物液体样品的方法定量限分别为0.01~0.2 mg/kg和0.15~2.0 µg/L。12种目标毒素的平均回收率为73.0%~110.3%,相对标准偏差不超过19.4%,符合生物基质中痕量化合物的测定要求。应用该方法对云南省的蘑菇样品进行了分析。结果共检测出 11 种毒素,其中不包括伊柳丁 M,其浓度范围为 0.61~2143 mg/kg。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Separations
Separations Chemistry-Analytical Chemistry
CiteScore
3.00
自引率
15.40%
发文量
342
审稿时长
12 weeks
期刊介绍: Separations (formerly Chromatography, ISSN 2227-9075, CODEN: CHROBV) provides an advanced forum for separation and purification science and technology in all areas of chemical, biological and physical science. It publishes reviews, regular research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, unique features of this journal: Manuscripts regarding research proposals and research ideas will be particularly welcomed. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Manuscripts concerning summaries and surveys on research cooperation and projects (that are funded by national governments) to give information for a broad field of users. The scope of the journal includes but is not limited to: Theory and methodology (theory of separation methods, sample preparation, instrumental and column developments, new separation methodologies, etc.) Equipment and techniques, novel hyphenated analytical solutions (significantly extended by their combination with spectroscopic methods and in particular, mass spectrometry) Novel analysis approaches and applications to solve analytical challenges which utilize chromatographic separations as a key step in the overall solution Computational modelling of separations for the purpose of fundamental understanding and/or chromatographic optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信