Computation and analysis of surface wave dispersion and attenuation in layered viscoelastic-vertical transversely isotropic media by the generalized R/T coefficient method

Shichuan Yuan, Lei Pan, Caiwang Shi, Xianhai Song, Xiaofei Chen
{"title":"Computation and analysis of surface wave dispersion and attenuation in layered viscoelastic-vertical transversely isotropic media by the generalized R/T coefficient method","authors":"Shichuan Yuan, Lei Pan, Caiwang Shi, Xianhai Song, Xiaofei Chen","doi":"10.1093/gji/ggae207","DOIUrl":null,"url":null,"abstract":"\n In this study, we propose a systematic and effective method, that is, an extended version of the generalized reflection/transmission (R/T) coefficient method, for computing the phase-velocity (${c}_r$) dispersion curves, attenuation coefficient ($\\alpha $) curves, and eigenfunctions of both Rayleigh and Love waves as well as the ellipticity of Rayleigh waves in layered viscoelastic-vertical transversely isotropic (VTI) media. The numerical scheme of combining the root-searching method with the local optimization method is designed for determining the complex-valued modal solutions (i.e., complex wavenumber $k = {\\omega / {{c_{r}} - i\\alpha }}$) of surface waves. The near-surface sedimentary geological environment is taken as the model example because it is typical viscoelastic-VTI media. Besides the anisotropic-viscoelastic (AV) media, our algorithm can also compute surface waves in isotropic-elastic (IE), isotropic-viscoelastic (IV), and anisotropic-elastic (AE) media by resetting the corresponding parameters. Using the six-layer half-space models and in these four media, we verify the correctness of our algorithm by benchmarking the modal solutions against those from other methods. In the four-layer half-space model, by comparing the results of IE, IV, AE, and AV media, we analyze the effects of velocity anisotropy, viscoelasticity and attenuation anisotropy on the dispersion and attenuation characteristics of both Rayleigh and Love waves in detail. Our study can provide a theoretical basis and useful tool for surface wave imaging considering the anisotropy and/or viscoelasticity of the medium, which has the potential to better investigate the solid Earth's internal structure.","PeriodicalId":502458,"journal":{"name":"Geophysical Journal International","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/gji/ggae207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a systematic and effective method, that is, an extended version of the generalized reflection/transmission (R/T) coefficient method, for computing the phase-velocity (${c}_r$) dispersion curves, attenuation coefficient ($\alpha $) curves, and eigenfunctions of both Rayleigh and Love waves as well as the ellipticity of Rayleigh waves in layered viscoelastic-vertical transversely isotropic (VTI) media. The numerical scheme of combining the root-searching method with the local optimization method is designed for determining the complex-valued modal solutions (i.e., complex wavenumber $k = {\omega / {{c_{r}} - i\alpha }}$) of surface waves. The near-surface sedimentary geological environment is taken as the model example because it is typical viscoelastic-VTI media. Besides the anisotropic-viscoelastic (AV) media, our algorithm can also compute surface waves in isotropic-elastic (IE), isotropic-viscoelastic (IV), and anisotropic-elastic (AE) media by resetting the corresponding parameters. Using the six-layer half-space models and in these four media, we verify the correctness of our algorithm by benchmarking the modal solutions against those from other methods. In the four-layer half-space model, by comparing the results of IE, IV, AE, and AV media, we analyze the effects of velocity anisotropy, viscoelasticity and attenuation anisotropy on the dispersion and attenuation characteristics of both Rayleigh and Love waves in detail. Our study can provide a theoretical basis and useful tool for surface wave imaging considering the anisotropy and/or viscoelasticity of the medium, which has the potential to better investigate the solid Earth's internal structure.
用广义 R/T 系数法计算和分析层状粘弹性垂直横向各向同性介质中的面波频散和衰减
在本研究中,我们提出了一种系统而有效的方法,即广义反射/透射(R/T)系数法的扩展版,用于计算层状粘弹性-垂直横向各向同性(VTI)介质中的相位-速度(${c}_r$)频散曲线、衰减系数($\alpha $)曲线、瑞利波和爱波的特征函数以及瑞利波的椭圆度。为确定面波的复值模态解(即复波长 $k = {\omega / {{c_{r}} - i\alpha }}$),设计了根搜索法与局部优化法相结合的数值方案。由于近地表沉积地质环境是典型的粘弹性-VTI 介质,因此将其作为模型示例。除了各向异性-粘弹性(AV)介质,我们的算法还可以通过重新设置相应的参数来计算各向同性-弹性(IE)、各向同性-粘弹性(IV)和各向异性-弹性(AE)介质的面波。使用六层半空间模型和这四种介质,我们通过将模态解与其他方法的模态解进行对比,验证了我们算法的正确性。在四层半空间模型中,通过比较 IE、IV、AE 和 AV 介质的结果,我们详细分析了速度各向异性、粘弹性和衰减各向异性对瑞利波和爱波的频散和衰减特性的影响。我们的研究可以为考虑介质各向异性和/或粘弹性的面波成像提供理论依据和有用工具,从而有可能更好地研究固体地球的内部结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信