Kelvin Voon, Yan Jie, S. Shaari, Fairus Ahmad, Nor Farhani Zakaria, Norhayati Sabani
{"title":"Photoluminescence Measurement of Triplet Sensitizer-Emitter Solution Using a Customized 3D-Printed Sample Holder","authors":"Kelvin Voon, Yan Jie, S. Shaari, Fairus Ahmad, Nor Farhani Zakaria, Norhayati Sabani","doi":"10.58915/ijneam.v17ijune.854","DOIUrl":null,"url":null,"abstract":"This study explores the photoluminescence (PL) measurement of triplet sensitizer-emitter (TSE) solutions using a custom 3D-printed sample holder, within the context of triplet-triplet annihilation based molecular photon upconversion (TTA-UC) systems targeting the Vis-to-UV spectral region. TTA-UC converts low-energy visible photons to higher-energy ultraviolet (UV) photons, holding promise for solar energy harvesting and photonics applications. Two TSE couples, 4CzIPN/TP and 4CzIPN/QP, were investigated, and their upconverted fluorescence spectra showed peaks at 344 nm and 354 nm / 370 nm, respectively, confirming efficient upconversion capabilities. The 3D-printed sample holder facilitated reproducible PL measurements, enabling the calculation of quantum yields (ΦUC). The 4CzIPN/TP and 4CzIPN/QP couples exhibited low quantum yields (0.028% and 0.043%, respectively), suggesting the need for improved deoxygenation methods to enhance the triplet-triplet annihilation process and overall quantum efficiency. Despite modest yields, successful UV upconverted fluorescence observation underscores the feasibility of the Vis-to-UV TTA-UC system. This study provides insights into TTA-UC optimization and demonstrates the utility of the 3D-printed sample holder for affordable and precise PL measurements, paving the way for future advancements in photonics and solar energy applications.","PeriodicalId":512011,"journal":{"name":"International Journal of Nanoelectronics and Materials (IJNeaM)","volume":"20 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nanoelectronics and Materials (IJNeaM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58915/ijneam.v17ijune.854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the photoluminescence (PL) measurement of triplet sensitizer-emitter (TSE) solutions using a custom 3D-printed sample holder, within the context of triplet-triplet annihilation based molecular photon upconversion (TTA-UC) systems targeting the Vis-to-UV spectral region. TTA-UC converts low-energy visible photons to higher-energy ultraviolet (UV) photons, holding promise for solar energy harvesting and photonics applications. Two TSE couples, 4CzIPN/TP and 4CzIPN/QP, were investigated, and their upconverted fluorescence spectra showed peaks at 344 nm and 354 nm / 370 nm, respectively, confirming efficient upconversion capabilities. The 3D-printed sample holder facilitated reproducible PL measurements, enabling the calculation of quantum yields (ΦUC). The 4CzIPN/TP and 4CzIPN/QP couples exhibited low quantum yields (0.028% and 0.043%, respectively), suggesting the need for improved deoxygenation methods to enhance the triplet-triplet annihilation process and overall quantum efficiency. Despite modest yields, successful UV upconverted fluorescence observation underscores the feasibility of the Vis-to-UV TTA-UC system. This study provides insights into TTA-UC optimization and demonstrates the utility of the 3D-printed sample holder for affordable and precise PL measurements, paving the way for future advancements in photonics and solar energy applications.