SPECTRAL METHOD FOR ONE DIMENSIONAL BENJAMIN-BONA-MAHONY-BURGERS EQUATION USING THE TRANSFORMED GENERALIZED JACOBI POLYNOMIAL

IF 1.6 3区 数学 Q1 MATHEMATICS
Yu Zhou
{"title":"SPECTRAL METHOD FOR ONE DIMENSIONAL BENJAMIN-BONA-MAHONY-BURGERS EQUATION USING THE TRANSFORMED GENERALIZED JACOBI POLYNOMIAL","authors":"Yu Zhou","doi":"10.3846/mma.2024.18595","DOIUrl":null,"url":null,"abstract":"The Benjamin-Bona-Mahony-Burgers equation (BBMBE) plays a fundemental role in many application scenarios. In this paper, we study a spectral method for the BBMBE with homogeneous boundary conditions. We propose a spectral scheme using the transformed generalized Jacobi polynomial in combination of the explicit fourth-order Runge-Kutta method in time. The boundedness, the generalized stability and the convergence of the proposed scheme are proved. The extensive numerical examples show the efficiency of the new proposed scheme and coincide well with the theoretical analysis. The advantages of our new approach are as follows: (i) the use of the transformed generalized Jacobi polynomial simplifies the theoretical analysis and brings a sparse discrete system; (ii) the numerical solution is spectral accuracy in space.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2024.18595","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The Benjamin-Bona-Mahony-Burgers equation (BBMBE) plays a fundemental role in many application scenarios. In this paper, we study a spectral method for the BBMBE with homogeneous boundary conditions. We propose a spectral scheme using the transformed generalized Jacobi polynomial in combination of the explicit fourth-order Runge-Kutta method in time. The boundedness, the generalized stability and the convergence of the proposed scheme are proved. The extensive numerical examples show the efficiency of the new proposed scheme and coincide well with the theoretical analysis. The advantages of our new approach are as follows: (i) the use of the transformed generalized Jacobi polynomial simplifies the theoretical analysis and brings a sparse discrete system; (ii) the numerical solution is spectral accuracy in space.
利用变换广义雅可比多项式的一维本杰明-博纳-马霍尼-伯格斯方程谱法
本杰明-博纳-马霍尼-伯格斯方程(Benjamin-Bona-Mahony-Burgers equation,BBMBE)在许多应用场景中发挥着重要作用。本文研究了具有同质边界条件的 BBMBE 的谱方法。我们提出了一种使用转化广义雅可比多项式结合显式四阶 Runge-Kutta 方法的光谱方案。我们证明了所提方案的有界性、广义稳定性和收敛性。大量的数值实例显示了新方案的效率,并与理论分析不谋而合。我们的新方法具有以下优势:(i) 使用变换广义雅可比多项式简化了理论分析,并带来了稀疏离散系统;(ii) 数值解在空间上具有谱精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信