A Cosserat bond-based correspondence model and the investigation of microstructure effect on crack propagation

IF 2.8 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Zhuang Chen, Xihua Chu, Diansen Yang
{"title":"A Cosserat bond-based correspondence model and the investigation of microstructure effect on crack propagation","authors":"Zhuang Chen,&nbsp;Xihua Chu,&nbsp;Diansen Yang","doi":"10.1007/s40571-024-00785-0","DOIUrl":null,"url":null,"abstract":"<div><p>Microstructure plays a significant role in the fracture behavior of the material. To analyze the microstructure effect on crack propagation, a peridynamic model named Cosserat bond-based correspondence model (CBBCM) is proposed based on the Cosserat continuum theory and bond-based correspondence model. In CBBCM, the peridynamic (PD) force and moment are obtained by Cosserat constitutive equations through the relation between PD forces/moment and the stress/couple stress. Such relation is derived according to the bond relation of the Cosserat peridynamic model. To validate the proposed CBBCM, three numerical examples are presented, and the comparison shows good agreement between the CBBCM and the experimental observation and numerical results. The numerical convergence studies of m-convergence and <i>δ</i>-convergence are made to demonstrate the proposed CBBCM. The microstructure effect of crack propagation is analyzed by applying different Cosserat shear modulus and internal length scales in the simulation. The results indicate that the Cosserat shear modulus has an impact on the crack propagation and the crack propagates slower with a greater Cosserat shear modulus. The internal length scale has little impact on the crack path and only influences the local damage distribution.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"12 1","pages":"165 - 182"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-024-00785-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Microstructure plays a significant role in the fracture behavior of the material. To analyze the microstructure effect on crack propagation, a peridynamic model named Cosserat bond-based correspondence model (CBBCM) is proposed based on the Cosserat continuum theory and bond-based correspondence model. In CBBCM, the peridynamic (PD) force and moment are obtained by Cosserat constitutive equations through the relation between PD forces/moment and the stress/couple stress. Such relation is derived according to the bond relation of the Cosserat peridynamic model. To validate the proposed CBBCM, three numerical examples are presented, and the comparison shows good agreement between the CBBCM and the experimental observation and numerical results. The numerical convergence studies of m-convergence and δ-convergence are made to demonstrate the proposed CBBCM. The microstructure effect of crack propagation is analyzed by applying different Cosserat shear modulus and internal length scales in the simulation. The results indicate that the Cosserat shear modulus has an impact on the crack propagation and the crack propagates slower with a greater Cosserat shear modulus. The internal length scale has little impact on the crack path and only influences the local damage distribution.

Abstract Image

基于 Cosserat 键的对应模型及微观结构对裂纹扩展影响的研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Particle Mechanics
Computational Particle Mechanics Mathematics-Computational Mathematics
CiteScore
5.70
自引率
9.10%
发文量
75
期刊介绍: GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research. SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including: (a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc., (b) Particles representing material phases in continua at the meso-, micro-and nano-scale and (c) Particles as a discretization unit in continua and discontinua in numerical methods such as Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信