{"title":"Emergent knowledge patterns in verification artifacts","authors":"Sukhwan Jung, A. Salado","doi":"10.1002/sys.21771","DOIUrl":null,"url":null,"abstract":"Knowledge graphs have recently been introduced to the verification strategy field successfully representing the complexity of verification in real‐life applications. This format provides a scale‐free analysis of verification strategies compared to the more traditional verification artifacts such as requirement traceability matrices and verification matrices. Complexities can be observed visually and numerically both in terms of the problem scope and the entity interdependencies. In this paper, we retrieve verification strategy information patterns representing different aspects of verification. This is achieved by tapping into the network properties of knowledge graphs. They are dissected to detect knowledge patterns emerging from different parts of the verification artifacts. Similarities and differences between the two verification strategies are explained numerically and semantically. Seemingly unrelated requirements and verification activities are connected through indirect connections, and orthogonalities between independent requirements are analyzed. These findings validate the scalability of verification planning and assessment based on knowledge graphs.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21771","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge graphs have recently been introduced to the verification strategy field successfully representing the complexity of verification in real‐life applications. This format provides a scale‐free analysis of verification strategies compared to the more traditional verification artifacts such as requirement traceability matrices and verification matrices. Complexities can be observed visually and numerically both in terms of the problem scope and the entity interdependencies. In this paper, we retrieve verification strategy information patterns representing different aspects of verification. This is achieved by tapping into the network properties of knowledge graphs. They are dissected to detect knowledge patterns emerging from different parts of the verification artifacts. Similarities and differences between the two verification strategies are explained numerically and semantically. Seemingly unrelated requirements and verification activities are connected through indirect connections, and orthogonalities between independent requirements are analyzed. These findings validate the scalability of verification planning and assessment based on knowledge graphs.
期刊介绍:
Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle.
Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.