The power of specific emotion analysis in predicting donations: A comparative empirical study between sentiment and specific emotion analysis in social media

S. Lee, Leo Paas, Ho Seok Ahn
{"title":"The power of specific emotion analysis in predicting donations: A comparative empirical study between sentiment and specific emotion analysis in social media","authors":"S. Lee, Leo Paas, Ho Seok Ahn","doi":"10.1177/14707853241261248","DOIUrl":null,"url":null,"abstract":"This paper investigates the role of sentiment and specific emotion analysis in forecasting donation behaviour within the context of social networking services (SNSs). The study empirically examines the influence of sentiment and specific emotion analysis on donation behaviour for two non-profit organizations (NPOs): The Fred Hollows Foundation (The Foundation) in both Australia and New Zealand, and The University of Auckland (UOA) in New Zealand. We collected and analysed 298,569 tweets from 106,349 users mentioning these NPOs, along with 5,175,359 tweets mentioning the top 20 US brands from 1,623,113 users. We found that NPOs are often associated with brands that induce joy. Furthermore, sadness expressed by marketers and joy expressed by users positively affected donations to The Foundation, while user-expressed anger positively influenced donations to UOA within the same month. A two-month rolling average analysis highlighted the significant effect of lingering negative emotions on monthly donations over time. Specific emotion analysis outperforms sentiment analysis by demonstrating a higher effect size ( R 2). We advocate for the application of the transformer-transfer learning method for specific emotion analysis when scrutinizing large-scale social media data and devising fundraising strategies.","PeriodicalId":506657,"journal":{"name":"International Journal of Market Research","volume":"13 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Market Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14707853241261248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the role of sentiment and specific emotion analysis in forecasting donation behaviour within the context of social networking services (SNSs). The study empirically examines the influence of sentiment and specific emotion analysis on donation behaviour for two non-profit organizations (NPOs): The Fred Hollows Foundation (The Foundation) in both Australia and New Zealand, and The University of Auckland (UOA) in New Zealand. We collected and analysed 298,569 tweets from 106,349 users mentioning these NPOs, along with 5,175,359 tweets mentioning the top 20 US brands from 1,623,113 users. We found that NPOs are often associated with brands that induce joy. Furthermore, sadness expressed by marketers and joy expressed by users positively affected donations to The Foundation, while user-expressed anger positively influenced donations to UOA within the same month. A two-month rolling average analysis highlighted the significant effect of lingering negative emotions on monthly donations over time. Specific emotion analysis outperforms sentiment analysis by demonstrating a higher effect size ( R 2). We advocate for the application of the transformer-transfer learning method for specific emotion analysis when scrutinizing large-scale social media data and devising fundraising strategies.
特定情绪分析在预测捐赠方面的威力:社交媒体中情感分析与特定情绪分析的比较实证研究
本文研究了在社交网络服务(SNS)背景下,情感和特定情绪分析在预测捐赠行为中的作用。本研究通过实证研究了情感和特定情绪分析对两个非营利组织(NPO)捐赠行为的影响:这两家非营利组织分别是澳大利亚和新西兰的弗雷德-霍洛基金会(Fred Hollows Foundation)和新西兰的奥克兰大学(University of Auckland,UOA)。我们收集并分析了来自 106,349 位用户的 298,569 条提及这些非营利组织的推文,以及来自 1,623,113 位用户的 5,175,359 条提及美国前 20 大品牌的推文。我们发现,非营利组织往往与能带来快乐的品牌联系在一起。此外,营销人员表达的悲伤和用户表达的喜悦对基金会的捐款产生了积极影响,而用户表达的愤怒对当月 UOA 的捐款产生了积极影响。两个月的滚动平均分析凸显了随着时间的推移,挥之不去的负面情绪对每月捐款的显著影响。特定情绪分析优于情感分析,显示出更高的效应大小(R 2)。我们主张在仔细研究大规模社交媒体数据和制定筹款策略时,将转换器-转移学习方法应用于特定情绪分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信