Human feedback enhanced autonomous intelligent systems: a perspective from intelligent driving

Kang Yuan, Yanjun Huang, Lulu Guo, Hong Chen, Jie Chen
{"title":"Human feedback enhanced autonomous intelligent systems: a perspective from intelligent driving","authors":"Kang Yuan,&nbsp;Yanjun Huang,&nbsp;Lulu Guo,&nbsp;Hong Chen,&nbsp;Jie Chen","doi":"10.1007/s43684-024-00071-z","DOIUrl":null,"url":null,"abstract":"<div><p>Artificial intelligence empowers the rapid development of autonomous intelligent systems (AISs), but it still struggles to cope with open, complex, dynamic, and uncertain environments, limiting its large-scale industrial application. Reliable human feedback provides a mechanism for aligning machine behavior with human values and holds promise as a new paradigm for the evolution and enhancement of machine intelligence. This paper analyzes the engineering insights from ChatGPT and elaborates on the evolution from traditional feedback to human feedback. Then, a unified framework for self-evolving intelligent driving (ID) based on human feedback is proposed. Finally, an application in the congested ramp scenario illustrates the effectiveness of the proposed framework.</p></div>","PeriodicalId":71187,"journal":{"name":"自主智能系统(英文)","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43684-024-00071-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"自主智能系统(英文)","FirstCategoryId":"1093","ListUrlMain":"https://link.springer.com/article/10.1007/s43684-024-00071-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence empowers the rapid development of autonomous intelligent systems (AISs), but it still struggles to cope with open, complex, dynamic, and uncertain environments, limiting its large-scale industrial application. Reliable human feedback provides a mechanism for aligning machine behavior with human values and holds promise as a new paradigm for the evolution and enhancement of machine intelligence. This paper analyzes the engineering insights from ChatGPT and elaborates on the evolution from traditional feedback to human feedback. Then, a unified framework for self-evolving intelligent driving (ID) based on human feedback is proposed. Finally, an application in the congested ramp scenario illustrates the effectiveness of the proposed framework.

人的反馈增强型自主智能系统:智能驾驶的视角
人工智能推动了自主智能系统(AIS)的快速发展,但在应对开放、复杂、动态和不确定的环境方面,人工智能仍然举步维艰,限制了其在工业领域的大规模应用。可靠的人类反馈提供了一种使机器行为与人类价值观相一致的机制,有望成为进化和增强机器智能的新范例。本文分析了 ChatGPT 的工程启示,并阐述了从传统反馈到人工反馈的演变过程。然后,提出了一个基于人类反馈的自进化智能驾驶(ID)统一框架。最后,在拥挤的匝道场景中的应用说明了所提框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信