Feynman-Kac equation for Brownian non-Gaussian polymer diffusion

Tian Zhou, Heng Wang, W. Deng
{"title":"Feynman-Kac equation for Brownian non-Gaussian polymer diffusion","authors":"Tian Zhou, Heng Wang, W. Deng","doi":"10.1088/1751-8121/ad57b4","DOIUrl":null,"url":null,"abstract":"\n The motion of the polymer center of mass (CM) is driven by two stochastic terms that are Gaussian white noise generated by standard thermal stirring and chain polymerization processes, respectively. It can be described by the Langevin equation and is Brownian non-Gaussian by calculating the kurtosis. We derive the forward Fokker-Planck equation governing the joint distribution of the motion of CM and the chain polymerization process. The backward Fokker-Planck equation governing only the probability density function (PDF) of CM position for a given number of monomers is also derived. We derive the forward and backward Feynman-Kac equations for the functional distribution of the motion of the CM, respectively, and present some of their applications, which are validated by a deep learning method based on backward stochastic differential equations (BSDEs), i.e., the deep BSDE method.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad57b4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The motion of the polymer center of mass (CM) is driven by two stochastic terms that are Gaussian white noise generated by standard thermal stirring and chain polymerization processes, respectively. It can be described by the Langevin equation and is Brownian non-Gaussian by calculating the kurtosis. We derive the forward Fokker-Planck equation governing the joint distribution of the motion of CM and the chain polymerization process. The backward Fokker-Planck equation governing only the probability density function (PDF) of CM position for a given number of monomers is also derived. We derive the forward and backward Feynman-Kac equations for the functional distribution of the motion of the CM, respectively, and present some of their applications, which are validated by a deep learning method based on backward stochastic differential equations (BSDEs), i.e., the deep BSDE method.
布朗非高斯聚合物二聚体的费曼-卡克方程
聚合物质心(CM)的运动由两个随机项驱动,这两个随机项分别是由标准热搅拌和链式聚合过程产生的高斯白噪声。它可以用朗格文方程来描述,通过计算峰度可知其为布朗非高斯。我们推导出了控制 CM 运动和链式聚合过程联合分布的前向福克-普朗克方程。我们还推导出了仅控制给定单体数量下 CM 位置概率密度函数 (PDF) 的后向福克-普朗克方程。我们分别推导了 CM 运动函数分布的前向和后向费曼-卡克方程,并介绍了它们的一些应用,这些应用通过基于后向随机微分方程(BSDE)的深度学习方法(即深度 BSDE 方法)得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信